thermodynamic probability in hindi ऊष्मागतिक प्रायिकता क्या है समझाइये उदाहरण सहित व्याख्या कीजिये

ऊष्मागतिक प्रायिकता क्या है समझाइये उदाहरण सहित व्याख्या कीजिये thermodynamic probability in hindi ?

सूक्ष्म अवस्थायें और स्थूल अवस्थायें (Micro-States and Macro-States)
एक कोष्ठिका के विस्तार की सीमाओं के अन्दर, जिसमें किन्हीं अणुओं के निरूपक बिन्दु (representative point) स्थित हैं, उन अणुओं के निर्देशांकों का पूर्ण विनिर्देश (specification) तंत्र की एक सूक्ष्म (micro) अवस्था को परिभाषित करता है। इस प्रकार का विनिर्देश यह बताता है कि, dx, dy dz सीमाओं के अंदर प्रत्येक अणु कहां है और वह किस संवेग से किस दिशा में गतिमान है। यह विस्तृत विनिर्देश गैस के प्रेक्षण योग्य गुणों के निर्धारण के लिए बिल्कुल अनावश्यक है । उदाहरणार्थ, सामान्य आकाश के प्रत्येक आयतन अल्पांश में यदि अणुओं की संख्या समान होती है तो घनत्व (द्रव्यमान प्रति एकांक आयतन) समान होता है और यह इस बात पर निर्भर नहीं करता है कि कौनसे अणु किस आयतन अल्पांश में हैं।
इसी प्रकार गैस द्वारा लगाया गया दाब केवल इस बात पर निर्भर होता है कि कितने अणुओं के निर्दिष्ट संवेग हैं, न कि इस पर कि वे संवेग कौन से अणुओं के हैं। अन्य शब्दों में, प्रेक्षण योग्य गुण केवल इस बात पर निर्भर होते हैं कि कला निर्देशाकाश की प्रत्येक कोष्ठिका में कितने कला बिन्दु होते हैं। कला निर्देशाकाश की विभिन्न कोष्ठिकाओं में कला – बिन्दुओं का वितरण अर्थात् प्रत्येक कोष्ठिका में बिन्दुओं की संख्या का ( अर्थात् संख्याओं Ni का) विनिर्देश (specification) ही तंत्र की स्थूल अवस्था ( macrostate) परिभाषित करता है।
सूक्ष्म अवस्थाओं और स्थूल अवस्थाओं में अंतर चित्र ( ) द्वारा स्पष्ट किया गया है। कला निर्देशाकाश में कोष्ठिकाओं को 1, 2, 3, इत्यादि संख्याओं से और कला बिन्दुओं को a, b, c, इत्यादि अक्षरों से अंकित किया गया है। किसी विशिष्ट सूक्ष्म-अवस्था को इस कथन से निर्दिष्ट किया जाता है कि कला – बिन्दु (phase- points) a, e, p कोष्ठिका 1 में है, कला बिन्दु b, c कोष्ठिका 2 में है, इत्यादि । संगत स्थूल अवस्था केवल यह कह कर निर्दिष्ट की जाती है कि कोष्ठिका 1 में 3 है, कोष्ठिका 2 में संख्या N2 =i 2 है. और कला बिन्दुओं की कुल संख्या N है। व्यापक रूप में iवीं कोष्ठिका में संख्या
चिरसम्मत यांत्रिकी की अभिधारणाओं के अनुसार प्रत्येक क्षण एक दिये हुए गैस के लिए सूक्ष्म – अवस्था का अस्तित्व होता है। परन्तु कोई भी सूक्ष्म अवस्था बिना परिवर्तन के दीर्घ समय तक स्थायी नहीं हो सकती, क्योंकि सब अणु गति में होते हैं।
एक और सरल उदाहरण पर विचार कीजिये । ताश के खेल में यदि किसी के पास 4 हुकुम के 4 पान के, 2 ईंट के व 3 चिड़ी के पत्ते आते हैं तो वह एक स्थूल अवस्था होगी। परन्तु यदि यह विवरण भी प्राप्त हो कि हुकुम के A,K,J 10; पान के Q, 9, 7, 2; ईट के K, 8 तथा चिड़ी के K, Q, J हैं तो यह पूर्णत: विनिर्देशित वितरण सूक्ष्म-अवस्था होगी। इस प्रकार एक स्थूल अवस्था में अनेक सूक्ष्म अवस्थायें हो सकती हैं।
अणुओं के उदाहरण में यदि कला बिन्दुओं का विस्थापन इस प्रकार होता है कि विभिन्न कोष्ठिकाओं में कला बिन्दुओं की संख्या में परिवर्तन नहीं होता है तो स्थूल अवस्था भी अपरिवर्तित रहेगी।

साख्यिकीय यांत्रिकी की यह मूलभूत परिकल्पना है कि किसी निकाय की सब सूक्ष्म अवस्थायें समान रूप से संभाव्य होती हैं। ताश के पत्तों के उदाहरण में इस प्रकार S – AKJ10, H-Q972, D-K8 व C-KQJ आने को संभावना (प्रायिकता) वही है जो S-AKQJ, H-AKQJ, D-AK व C – AKQ की है, इत्यादि ।
वह स्थूल अवस्था, जिसके लिए सूक्ष्म अवस्थाओं की संख्या अधिकतम होती है, सर्वाधिक बार प्राप्त होगी। यदि किसी विशिष्ट स्थूल अवस्था के लिए अन्य के सापेक्ष अत्यधिक सूक्ष्म अवस्थायें प्राप्त होती हैं, जैसा कि वास्तव में होता है, तो यही स्थूल अवस्था प्रेक्षित होगी । अन्य स्थूल अवस्थायें दुर्लभ घटनाओं के रूप में रहेंगी।
 ऊष्मागतिक प्रायिकता (Thermodynamic Probability)
अब हम यह विचार करेंगे कि एक दी हुई स्थूल अवस्था के संगत कितनी सूक्ष्म अवस्थाऐं होती हैं और क्या कोई ऐसी विशेष स्थूल – अवस्था है जिसके लिए यह संख्या अधिकतम होती है। किसी दी हुई स्थूल अवस्था के संगत सूक्ष्म-अवस्थाओं की संख्या उस स्थूल अवस्था की ऊष्मागतिक प्रायिकता कहलाती है और इसे W से निरूपित किया जाता है। सामान्यत:, W एक बहुत बड़ी संख्या होती है।
एक सरल उदाहरण लीजिये । मान लीजिए कि कला निर्देशाकाश में, i और j केवल दो कोष्ठिकायें हैं और a, b, c एवं d चार कला-बिन्दु हैं। मान लीजिए कि N; और N क्रमानुसार कोष्ठिकाओं i व j में कला – बिन्दुओं की संख्या निरूपित करते हैं। संभव स्थूल अवस्थाएँ पांच हैं ( 4, 0), ( 3, 1), (2, 2),

इन अवस्थाओं में से प्रत्येक के संगत, सामान्यतः सूक्ष्म अवस्थाओं की भिन्न संख्या होती है। विशिष्ट स्थूल-अवस्था, Ni = 3, Nj = 1, के संगत सूक्ष्म-अवस्थाएँ चित्र (6.5-2 ) (अ) में प्रदर्शित की गई है और हम देखते हैं कि ये चार हैं, अतः इस स्थूल – अवस्था के लिए W = 4.
एक विशेष कोष्ठिका में कला – बिन्दुओं के क्रम में परिवर्तन से स्थूल अवस्था में परिवर्तन नहीं होता है। अतः चित्र (6.5-2) (ब) में प्रदर्शित सूक्ष्म – अवस्था वही है जो चित्र (6.5-2 ) (अ) में प्रदर्शित अवस्थाओं की पहली
अवस्था है।
की भिन्न-भिन्न व्यवस्थाओं और क्रमचयों की संख्या लिखकर किया जा सकता है। इस संख्या में उन क्रमचयों को एक दी हुई स्थूल अवस्था के संगत सूक्ष्म अवस्थाओं की संख्या का परिकलन स्थूल – अवस्था में कला – बिन्दुओं छोड़ दिया जाता है जो एक विशेष कोष्ठिका में केवल बिन्दुओं के क्रम का आपस में परिवर्तन करते हैं। N वस्तुओं को एक अनुक्रम में व्यवस्थित करने की भिन्न रीतियों की संख्या, अर्थात् क्रमचयों की संख्या, N1 है। पहली का वरण N प्रकार से सम्भव है, दूसरी का (N – 1), तीसरी (N – 2) इत्यादि, अन्तिम केवल । प्रकार से । अतः a, b, c, अक्षरों के लिए क्रमचयों की संख्या 4! = 24 होती है। किन्तु इससे स्थूल अवस्था (3, 1) में सूक्ष्म अवस्थाओं की संख्या नहीं मिलती है, क्योंकि इसमें कोष्ठिका i में तीन बिन्दुओं के संभव क्रमचय, जो 3! = 6 हैं, सम्मिलित हैं। हमें क्रमचयों की कुल संख्या, 24 को उस संख्या से विभाजित करना आवश्यक है जो कोष्ठिका i में बिन्दुओं का क्रमचय करती हैं, इस प्रकार हमें सूक्ष्म अवस्थाओं की संख्या 24/6 = 4 प्राप्त होती है, जो पहले की गई गणना से प्राप्त परिणाम से सहमति में है। N कला बिन्दुओं की व्यापक स्थिति में, जिसमें सामान्यत: एक से अधिक कोष्ठिका में क्रमचय सम्भव है, किसी स्थूल अवस्था के संगत सूक्ष्म – अवस्थाओं की संख्या, अथवा स्थूल अवस्था की ऊष्मागतिक प्रायिकता है

यदि कोई कोष्ठिका रिक्त है, तो उस कोष्ठिका के लिए Ni = 0, और यदि समीकरण (2) से सही उत्तर प्राप्त करना है, तो O! = 1 होना आवश्यक है। यह 0! की परिभाषा मानी जा सकती है। चार कला बिन्दुओं एवं दो कोष्ठिकाओं के उपर्युक्त उदाहरण पर पुन: विचार करने पर हम पांच स्थूल अवस्थाओं की ऊष्मागतिक प्रायिकता के लिए पाते हैं

इस प्रकार अधिकतम प्रायिकता की स्थूल अवस्था वह है जिसमें प्रत्येक कोष्ठिका में दो बिन्दु होते हैं। और d निरतंर पाँच स्थूल-अवस्थाओं के संगत कुल 16 संभव सूक्ष्म अवस्थाएँ हैं। यदि कला-बिन्दु a, b, c, विस्थापित हो रहे हैं जिसके फलस्वरूप एक के पश्चात् दूसरी सूक्ष्म अवस्था प्रकट होती है, और सब सूक्ष्म अवस्थाएँ समान आवृत्ति से प्रकट होती हैं, तो पहली और पाँचवी स्थूल अवस्थाएँ प्रत्येक कुल समय के 1/16वें भाग के लिए देखी जा सकेंगी, दूसरी और चौथी प्रत्येक समय के 1/4 वें भाग के लिए और तीसरी समय के 3/8 वें भाग के लिए अर्थात् यह सर्वाधिक प्रेक्षित होगी।

अब हम गैस के लिए W के आंकलन की समस्या पर पुन: विचार करते हैं जहाँ संख्या N और सब Ni संख्याएं अत्यधिक बड़ी हैं। एक बड़ी संख्या का क्रमगुणन (factorial) यथेष्ठ परिशुद्धता के साथ स्टार्लिंग (Sterling) के सन्निकटन द्वारा ज्ञात किया जा सकता है। इसके अनुसार ln(x!)=xlnx−x …(3) अतः समीकरण (2) के दोनों पक्षों का लॉगेरिथ्म लेकर स्टर्लिंग सन्निकटन प्रयुक्त कर, हम प्राप्त करते हैं

समय के साथ कला निर्देशाकाश की कोष्ठिकाओं में कला बिन्दु इधर-उधर विस्थापित होते हैं जिससे संख्याएँ N; परिवर्तित होती हैं। यदि तंत्र अधिकतम ऊष्मागतिक प्रायिकता W° की एक अवस्था में है, तो N संख्याओं में परिवर्तनों से उत्पन्न W° का प्रथम अवकल शून्य होता है। कला निर्देशाकाश में बिन्दुओं की अविरत गति से उत्पन्न लघु परिवर्तन निरूपित करने के लिए हम प्रतीक δ प्रयुक्त करेंगे। यदि प्रायिकता W° अधिकतम है तो इसका लॉगेरिथ्म भी अधिकतम है, अतः अधिकतम प्रायिकता के लिए प्रतिबन्ध है

राशियाँ δN1, δN2 इत्यादि, आण्विक गतियों या संघट्टों के परिणामस्वरूप N1, N2 इत्यादि संख्याओं में लघु वृद्धियाँ अथवा ह्रास हैं। यदि ये सब स्वतंत्र होतीं तो प्रत्येक के गुणांक को अलग-अलग शून्य होना होता । परन्तु δN स्वतंत्र नहीं है, क्योंकि कणों की कुल संख्या नियत है, और कुछ कोष्ठिकाओं में संख्याओं में वृद्धियों को अन्य कोष्ठिकाओं में ह्रासों से ठीक संतुलन होना आवश्यक है। अर्थात्

यह δNi राशियों पर प्रयुक्त एक प्रतिबन्ध समीकरण है। इसके अतिरिक्त विचाराधीन तंत्र विलगित माना गया है, जिससे इसकी आंतरिक ऊर्जा U अपरिवर्ती रहती है। अतः कोष्ठिकाओं में कला बिन्दुओं की संख्याओं में कोई परिवर्तन, जो कुछ कला बिन्दुओं को अधिक ऊर्जा की कोष्ठिकाओं में ले जाते हैं, कुछ अन्य बिन्दुओं को निम्न ऊर्जा की कोष्ठिकाओं में ले जाकर संतुलित होना आवश्यक है। मान लीजिए कि εi एक अणु की ऊर्जा निरूपित करता है जब उसका कला बिन्दु i वीं कोष्ठिका में है। सामान्यतः राशि εi कोष्ठिका के सब निर्देशांकों पर निर्भर होती है। उन सब Ni की कुल ऊर्जा, जिनके कला- I-बिन्दु iवीं कोष्ठिका में है, εi Ni होती है जिससे तंत्र की आन्तरिक ऊर्जा का मान होगा-

U = Σ∈i Ni जब i वीं कोष्ठिका में बिन्दुओं की संख्या δNi परिवर्तित होती है तो आंतरिक ऊर्जा में परिवर्तन ∈iδNi होता है और क्योंकि कुल आंतरिक ऊर्जा नियत रहती है अतः इन सब परिवर्तनों का योग शून्य होना चाहिए। अतः

δU = Σ∈i δNi = ∈ 1 δ N1 + ∈2 δ N2 + ∈3 δ N3 +…. = 0

यह SN; राशियों पर लगाया एक दूसरा प्रतिबंध – समीकरण है। अब हम पिछले अध्याय में वर्णित, अनिर्धारित गुणकों की लाग्रांज (Lagrange) की विधि का उपयोग करते हैं। समीकरण (7) को एक अचर से गुणा कीजिए, जिसको सुविधा के लिए हम – Inα लिखते हैं, समीकरण (9) को एक अन्य अचर β से गुणा कीजिये और समीकरण (5) में जोड़ दीजिये। इससे

Σ(In Ni – In α + β ∈i ) δ Ni = 0

चूंकि δNi राशियाँ प्रभावी रूप से स्वतंत्र हैं, अतः प्रत्येक के गुणांक का शून्य होना आवश्यक है, अत: i के किसी मान के लिए