जानिये Maxwell Boltzmann Statistics in hindi मैक्सवेल बोल्ट्जमान सांख्यिकी क्या है परिभाषा समझाइये ?
एन्ट्रॉपी और प्रायिकता (Entropy and Probability)
कला निर्देशाकाश में, अधिकतम प्रायिकता की स्थूल अवस्था वह अवस्था है जिसकी ओर एक विलगित तंत्र प्रवृत्त होता है। परन्तु ऊष्मागतिक दृष्टिकोण से एक बंद तंत्र की साम्यावस्था अधिकतम ऐन्ट्रॉपी की अवस्था होती है । यदि तंत्र संतुलन में नहीं है तो तंत्र के अंदर तब तक परिवर्तन होते हैं जब तक कि अधिकतम ऐन्ट्रॉपी की अवस्था प्राप्त नहीं हो जाती। अतएव साम्यावस्था में दोनों एन्ट्रॉपी तथा ऊष्मागतिक प्रायिकता के अधिकतम मान होते हैं, जिसके फलस्वरूप हम इनमें किसी सहसम्बन्ध की अपेक्षा करते हैं। हम यह कल्पना कर सकते हैं कि एन्ट्रॉपी प्रायिकता का कोई फलन होती है, अर्थात्
S = f(W) …..(1)
फलन f(W) की प्रकृति ज्ञात करने के लिए दो विलगित निकायों की कल्पना कीजिये। इन निकायों की जब ऊष्मागतिक प्रायिकताओं का मान क्रमश: W1 व W2 होता है तो इनकी एन्ट्रॉपी के मान क्रमश: S1 व S2 हैं। अत:
S1 = f (W1) व S2 = f (W2)
यदि इन निकायों के संयुक्त तंत्र की एन्ट्रॉपी s है तो
S = S1 + S2 = f (W1) + f (W2)
W = W1W2
परन्तु संयुक्त तंत्र की ऊष्मागतिक प्रायिकता
S = f (W) = f (W 1 W2)
समीकरण (3) व (5) से
f (W 1 W2) = f (W1) + f (W2)
यह संबंध संतुष्ट होने के लिए यह आवश्यक है कि फलन f का प्रारूप लघुगणकीय होना चाहिए।
W1 व W2 स्वतंत्र चर राशियाँ है, क्योंकि हम एक निकाय की अवस्था, अर्थात् W, को नियत रखते हुए दूसरे की अवस्था अर्थात् W2 को परिवर्तित कर सकते हैं या W2 को नियत रख कर W1 को इच्छानुसार बदल सकते हैं। अत: समीकरण (6) के आंशिक अवकलन से
इस प्रकार समीकरण (9) का बायां पक्ष केवल W1 का फलन है व दायां पक्ष केवल W2 का। अतः व्यापक रूप में
सामान्यतः एन्ट्रॉपी के परिवर्तन की ही गणना की जाती है। अतः समाकलन नियतांक का कोई महत्त्व नहीं होगा । इसके अतिरिक्त परम शून्य ताप पर ऐन्ट्रॉपी शून्य मानी जाती है और यदि उसके सापेक्ष किसी अन्य अवस्था में एन्ट्रॉपी ज्ञात करें तो C को शून्य लिया जा सकता है। इस प्रकार निकाय की एन्ट्रॉपी S व उसकी ऊष्मागतिक प्रायिकता W में निम्न संबंध प्राप्त होता है :
S=k ln W ….(12)
k एक नियतांक है, जिसे हम बाद में अभिनिर्धारित करेंगे, यह ज्ञात होता है कि यह बोल्ट्जमान नियतांक ही है। अतएव सांख्यिकीय यांत्रिकी एक बंद तंत्र में एन्ट्रॉपी में वृद्धि की व्याख्या, तंत्र के एक कम प्रसंभाव्य अवस्था से अधिक प्रसंभाव्य अवस्था में जाने की एक प्राकृतिक प्रवृत्ति के परिणाम के रूप में करती है। बहुधा प्रायिकता की संकल्पना को तंत्र की अव्यवस्था ” के रूप में व्यक्त करना सहायक होता है। जितनी अधिक अव्यवस्था होती है, उतनी ही अधिक ऊष्मागतिक प्रायिकता और उतनी ही अधिक ऐन्ट्रॉपी होती है।
एक पात्र पर विचार कीजिये जो एक विभाजक के द्वारा दो बराबर कक्षों में विभाजित किया गया है। विभाजक के विपरीत पक्षों में दो भिन्न गैसों के अणुओं की समान संख्या है। इस प्रकार के तंत्र में कुछ व्यवस्था होती है, क्योंकि एक गैस के सब अणु विभाजक के एक ओर होते हैं। और दूसरी गैस के सब अणु विभाजक के दूसरी ओर । यदि अब विभाजक हटा दिया जाए तो गैसें एक दूसरे में विसरण करती हैं। अन्त में, दोनों प्रकार के अणु पूर्ण आयतन में एकसमान रूप से वितरित हो जाते हैं। इस प्रकार प्रारंभिक व्यवस्था लुप्त हो जाती है, और तंत्र की अव्यवस्था, या उसकी मिश्रितता, में वृद्धि होती है। साथ ही गैस की ऐन्ट्रॉपी में भी वृद्धि हो जाती है, क्योंकि इस प्रक्रम में नियत ताप पर प्रत्येक गैस द्वारा घेरा हुआ आयतन दुगुना हो जाता है।
एक गैस के उत्क्रमणीय रूद्धोष्म प्रसरण में, आयतन बढ़ता है परन्तु ताप हासित होता है साथ ऐन्ट्रॉपी स्थिर रहती है, अत: अव्यवस्था स्थिर रहती है।
ऊष्मागतिकी के नियमों के अनुसार, एक बंद तंत्र में केवल वे प्रक्रियाऐं ही सम्पन्न हो सकती है जिनके लिए तंत्र की ऐन्ट्रॉपी में वृद्धि होती है या सीमांत अवस्था में वह स्थिर रहती है। कोई प्रक्रिया, जिसमें ऐन्ट्रॉपी में ह्रास होगा, वर्जित है। अब हम पुनः समीकरण ( 12 ) S = k In W पर विचार करते हैं।
पिछले खण्ड से In W व N का मान प्रयुक्त करने पर
lnW = N In N – Σ Ni In Ni
= N in N – Σ Ni (In N – In Z – βej)
iवीं कोष्ठिका में बिन्दुओं की संख्या अब T के पदों में अभिव्यक्त की जा सकती है :
इस प्रकार यदि वितरण फलन Z का मान ज्ञात कर लिया जाये तब एक तंत्र के सब ऊष्मागतिक गुणों का परिकलन किया जा सकता है। उदाहरणस्वरूप, N कणों के एक निकाय एवं n कोष्ठिकाओं के एक कला निर्देशाकाश पर विचार कीजिए । मान लीजिए कि एक कण की ऊर्जा का सब कोष्ठिकाओं में समान मान ∈ होता है जिससे ∈1 = ∈2 = ……∈i =∈ हैं तो
इस सरल उदाहरण में कोष्ठिकाओं में कणों का वितरण, आन्तरिक ऊर्जा, और एन्ट्रॉपी सब ताप पर निर्भर नहीं हैं | एक अन्य उदाहरण के रूप में N कणों के एक निकाय तथा केवल तीन कोष्ठिकाओं 1, 2, और 3 के कला निर्देशाकाश पर विचार कीजिए। मान लीजिए कि ∈1 = 0, ε2 = ε और ε3 = 2 ∈ इस निकाय के लिए वितरण होगा,
अनुपात ∈/k की विमाऐं ताप की विमाओं के समान हैं। इसको अभिलक्षणिक ताप कहते हैं तथा यह θ से निरूपि किया जाता है। θ के पदों में, Z = i + exp(-θ/T) + exp (-2θ/T) समीकरण (18) में ∈i व Z के मान रखने पर संगत कोष्ठिकाओं में कणों की संख्यायें होंगी-
उन तापों पर जो अभिलक्षणिक ताप की तुलना में अत्यल्प हैं, दोनों θ /T और 2θ/T, 1 की तुलना में बहुत बड़े हैं, exp (- θ/T) और exp (-2θ/T) बहुत छोटे हैं तथा exp (θ/T) और exp (2θ/T) बहुत बड़े हैं। तब N1, N के सन्निकटतः बराबर होता है, और N2 एवं N3 अत्यल्प होते हैं । अर्थात् लगभग सब कण कोष्ठिका 1 में होते हैं। उन तापों पर जो अभिलाक्षणिक ताप की तुलना में अधिक होते हैं, θ/T और 2θ / T, 1 से बहुत कम होते हैं, सब चरघातांकी पदों का मान लगभग एक होता है, और N1, N2 तथा N3 सब लगभग N / 3 के बराबर होते हैं। जब θ/T = 1 तब N1 = 0.67 N, N2 = 0.24 N, N3 = 0.09 N
मैक्सवेल-बोल्ट्जमान सांख्यिकी (Maxwell-Boltzmann Statistics)
इस सांख्यिकी में हम ऐसा निकाय लेते हैं जिसमें N – सर्वसम कण ( अणु या परमाणु) परन्तु ये कण विभेद्य (distinguishable) हैं। ये कण r कोष्ठिकाओं में वितरित हैं और इन कोष्ठिकाओं में कणों की संख्याऐं क्रमशः N1, N2, …Ni,….Nr हैं । इन कोष्ठिकाओं में कणों की संख्या पर कोई प्रतिबन्ध नहीं है। यदि वीं कोष्ठिका में स्थित प्रत्येक कण की ऊर्जा εi है व इस कोष्ठिका में समान ऊर्जा के g स्तर है तो बिना किसी प्रतिबन्ध के इन स्तरों में व्यवस्थित करने के ढंग (gi)Ni होंगे। ऊर्जा स्तर ∈i की अपभ्रष्टता (degeneracy) कहलाती है तथा यह ऊर्जा स्तर के सांख्यिकी भार (statistical weight) को व्यक्त करती है। अतः विभिन्न कोष्ठिकाओं में कुल N कणों को व्यवस्थित करने की विधियाँ अर्थात् सूक्ष्म अवस्थाओं की संख्या होगी,