ओम के नियम के अनुसार ” यदि चालक की भौतिक अवस्थाएं जैसे लम्बाई , क्षेत्रफल ,आयतन , ताप दाब इत्यादि अपरिवर्तित रहे तो चालक के सिरों पर आरोपित विभवांतर तथा इसमें बहने वाली धारा का अनुपात नियत रहता है। ”
ओम ने अपने नियम में बताया की यदि भौतिक अवस्था नियत रखी जाए तो चालक में प्रवाहित धारा का मान इसके सिरों पर विभवान्तर के समानुपाती होती है।
अतः ओम के नियमानुसार
V ∝ I
V = R I
यहाँ R समानुपाती नियतांक है इसे चालक का प्रतिरोध कहते है।
अतः चालक का प्रतिरोध R = V / I
प्रतिरोध का S.I. मात्रक ओम है इसे Ω से दर्शाया जाता है।
ओम के नियम से निष्कर्ष निकाल कर जब हम विभवांतर तथा चालक में प्रवाहित धारा के मध्य ग्राफ खींचते है तो यह ग्राफ निम्न प्रकार प्राप्त होता है।
ओम के नियम की असफलता (What are the failures of Ohm’s law?)
विद्युत चालन
ओम का नियम– धारा और विभवांतर के बीच संबंध की खोज सर्वप्रथम जर्मनी के जार्ज साइमन आम ने की। इस संबंध को व्यक्त करने के लिए ओम ने जिस नियम का प्रतिपादन किया, उसे ही ओम का नियम कहते है। इस नियम के अनुसार ‘‘स्थिर ताप पर किसी चालक में प्रवाहित होने वाली धारा चालक के सिरों के बीच विभवांतर के समानुपाती होती है।’’
यदि चालक के सिरों के बीच विभवांतर ट हो और उसमें प्रवाहित धारा प् हो, तो ओम के नियम से टप् या ट= प्त् जहाँ त् एक नियतांक है, जिसे चालक प्रतिरोध कहते है।
विद्युत-धारा
दो भिन्न विभव की वस्तुओं को यदि किसी धातु की तार में जोड़ दिया जाए, तो आवेश एक वस्तु से दूसरी वस्तु में प्रवाहित होने लगेगा। किसी चालक में आवेश के इसी प्रवाह को विद्युत धारा कहते है। धारा निम्न विभव से उच्च विभव की ओर प्रवाहित होती है, किन्तु परम्परा के अनुसार हम यह मानते है कि धारा का प्रवाह इलेक्ट्रॉनों के प्रवाह की विपरीत दिशा में होता है। अर्थात धनात्मक आवेश के प्रवाह की दिशा ही विद्युत-धारा की दिशा मानी जाती है। परिमाण एवं दिशा दोनों होने के बावजूद विद्युत-धारा एक अदिश राशि है, क्योकि यह जोड़ के त्रिभुज नियम का पालन नहीं करती है। प्रायः ठोस चालकों में विद्युत प्रवाह इलेक्ट्रॉनों द्वारा और द्रवों मे आयन तथा इलेक्ट्रॅन दोनों से ही होता है। अर्द्धचालकों में विद्युत प्रवाह इलेक्ट्रॉन तथा होल द्वारा होता है।
यदि किसी परिपथ में धारा का प्रवाह सदैव एक ही दिशा में होता रहता है, तो हम इसे दिष्ट धारा कहते है और यदि धारा का प्रवाह एकांतर क्रम में समानान्तर रूप से आगे और पीछे होता हो, तो ऐसी धारा प्रत्यावर्ती धारा कहलाती है। दिष्टधारा को संक्षेप में डी.सी. तथा प्रत्यावर्ती धारा को ए.सी. कहते है। विद्युत धारा का मात्रक एम्पीयर होता है।
यदि किसी चालक तार में 1 एम्पियर (।) की विद्युत धारा प्रवाहित हो रही है, तो इसका अर्थ है कि उस तार में प्रति सेकण्ड 6.25 ग 1018 इलेक्ट्रॉन एक सिरे से प्रविष्ट होते है तथा इतने ही इलेक्ट्रॉन प्रति सेकण्ड दूसरे सिरे से बाहर निकल जाते है।
विद्युत परिपथ में धारा का लगातार प्रवाह प्राप्त करने के लिए विद्युत वाहक बल की आवश्यकता होती है, इसे विद्युत सेल या जनित्र द्वारा प्राप्त किया जाता है।
प्रतिरोध– किसी चालक का वह गुण जो उसमें प्रवाहित धारा का विरोध करता है, प्रतिरोध कहलाता है। जब किसी चालक मे विद्युत धारा प्रवाहित की जाती हैं, तो चालक मे गतिशील इलेक्ट्रॉन अपने मार्ग में आने वाले इलेक्ट्रॉनों, परमाणुओं एवं आयनों से निरन्तर टकराते रहते हैं, इसी कारण प्रतिरोध की उत्पत्ति होती है। यदि किसी चालक के सिरों के बीच का विभवान्तर ट वोल्ट एवं उसमें प्रवाहित धारा द्य एम्पीयर हो।
प्रतिरोध = विभवान्तर या, त् = टध्प्
धारा
प्रतिरोध का ैप् इकाई ओम है, जिसका संकेत है। किसी चालक का प्रतिरोध निम्नलिखित बातो पर निर्भर करता है-
– चालक पदार्थ की प्रकृति पर- किसी चालक का प्रतिरोध उसके पदार्थ की प्रकृति पर निर्भर करता है।
– चालक के ताप पर- किसी चालक का प्रतिरोध उसके ताप पर निर्भर करता है। ताप बढ़ने पर चालक का प्रतिरोध बढ़ता है, लेकिन ताप बढ़ने पर अर्द्धचालकों का प्रतिरोध घटता है।
– चालक की लम्बाई पर- किसी चालक का प्रतिरोध उसकी लम्बाई का समानुपाती होता है। अर्थात लम्बाई बढ़ने से चालक का प्रतिरोध बढ़ता है और लम्बाई घटने से चालक का प्रतिरोध घटता है।
– चालक के अनुप्रस्थ काट के क्षेत्रफल पर- किसी चालक का प्रतिरोध उसके अनुप्रस्थ काट के क्षेत्रफल का व्युत्क्रमानुपाती होता है। अर्थात मोटाई बढ़ने पर चालक का प्रतिरोध घटता है।
अनुगमन वेग और विभवान्तर में सम्बन्ध (relation between drift velocity and potential difference)
माना PQ एक l लम्बाई का चालक है जिसके सिरों पर V विभवान्तर लगाया जाता है। चालक के अन्दर धनात्मक सिरे Q से ऋणात्मक सिरे P की तरफ एक विद्युत क्षेत्र E पैदा हो जाता है। इस क्षेत्र की तीव्रता –
E = V/l . . . . . .. . समीकरण-1
चालक का प्रत्येक मुक्त इलेक्ट्रॉन इसी क्षेत्र में स्थित है अत: प्रत्येक मुक्त इलेक्ट्रॉन पर लगने वाला विद्युत बल –
F = -E.e . . . . . .. . समीकरण-2
यदि इलेक्ट्रॉन का द्रव्यमान m हो तो विद्युत बल के कारण इलेक्ट्रॉन में उत्पन्न त्वरण –
a = F/m = -E.e/m . . . . . .. . समीकरण-3
चूँकि मुक्त इलेक्ट्रॉन का औसत वेग शून्य होता है।
चूँकि प्रारंभिक वेग u = 0
अंतिम वेग v = vd = अनुगमन वेग
इलेक्ट्रॉन द्वारा प्राप्त अधिकतम त्वरण –
a = -eE/m (समीकरण 3 से)
टकराने में लगा समय (श्रान्तिकाल) = τ
चूँकि गति के प्रथम समीकरण से –
V = u + at
मान रखने पर , Vd = 0 + (-eE/m)τ
Vd = -eEτ/mसमीकरण-1 से विद्युत क्षेत्र का मान रखने पर –
Vd = (-eτ/m)V/l
वेग का परिमाण |Vd| = | (-eτ/m)V/l|
इसलिए
Vd = eτ/m.v/l
यह समीकरण अनुगमन वेग और विभवान्तर में सम्बन्ध प्रदर्शित करता है।
अनुगमन वेग और धारा में सम्बन्ध (relation between drift velocity and electric field)
माना A अनुप्रस्थ परिच्छेद और l लम्बाई का PQ चालक है। इसके सिरों के मध्य विभवान्तर लगाते है। जैसे ही विभवान्तर लगाया जाता है , चालक का प्रत्येक मुक्त इलेक्ट्रॉन अनुगमन वेग Vd से धनात्मक सिरे Q की ओर गति करने लगता है। सबसे पहले Q सिरे पर स्थित इलेक्ट्रॉन चालक को छोड़ेगा तथा उसके बाद क्रमशः उसके पीछे वाले इलेक्ट्रॉन Q सिरे को छोड़ते रहेंगे। जिस समय P सिरे का इलेक्ट्रॉन Q सिरे को पार कर रहा होगा , तब तक चालक के समस्त मुक्त इलेक्ट्रॉन Q सिरे को पार कर चुके होंगे। इस क्रिया में लगा समय
t = l/Vd
यदि चालक के एकांक आयतन में मुक्त इलेक्ट्रॉनों की संख्या अर्थात इलेक्ट्रॉन घनत्व n हो तो चालक का प्रवाहित होने वाला आवेश –
q = इलेक्ट्रॉनों की संख्या x इलेक्ट्रॉन का आवेश
q = आयतन x इलेक्ट्रॉन घनत्व x इलेक्ट्रॉन आवेश
या
q = Al.ne
अत:
चालक में प्रवाहित धारा
i = q/t = A.l.ne/l/Vd = A.ne.Vd
या
Vd = i/Ane
यही अनुगमन और धारा में सम्बन्ध है।
नोट :
चूँकि i = nAVde
चूँकि Vd = e τ.E/m
अत: i = nAe x eτ.E/m = nAe2τ.E/m
या
i = nAe2τ.E/m
आंकिक प्रश्न और हल
उदाहरण : 10-4 m2 अनुप्रस्थ परिच्छेद वाले चालक में 10 एम्पियर की धारा बह रही है। यदि मुक्त इलेक्ट्रॉनों का घनत्व 9 x 1028 m-3 हो तो इलेक्ट्रॉनों का अनुगमन वेग ज्ञात कीजिये। इलेक्ट्रॉन का आवेश e = 1.6 x 10-19 C
हल : दिया गया है –
I = 10A , A = 10-4 m2 , n = 9 x 1028 m-3 , e = 1.6 x 10-19 C , Vd = ?
चूँकि Vd = 1/Ane
मान रखकर हल करने पर –
अत: Vd = 6.94 x 10-6 ms-1
गतिशीलता (mobility)
हम जानते है कि चालकता गतिमान आवेश वाहकों से उत्पन्न होती है। धातुओं में ये गतिमान आवेश वाहक इलेक्ट्रॉन है , आयनित गैस में ये इलेक्ट्रॉन और धनावेशित आयन है , विद्युत् अपघट्य में ये धनायन और ऋण आयन दोनों हो सकते है।
एक महत्वपूर्ण राशि गतिशीलता है जिसे प्रति एकांक विद्युत क्षेत्र के अनुगमन वेग के परिमाण के रूप में परिभाषित करते है।
चूँकि µ = vd/E = vd/E
अत: vd = e.τ.E/m
या
Vd/E = eτ/m
अत: µ = eτ/m
अत: इलेक्ट्रॉन की गतिशीलता
µe = eτe/me
मात्रक – चूँकि µ = vd/E
अत: µ का मात्रक = ms-1/Vm-1 = m2s-1v-1
या µ का मात्रक = ms-1/NC-1 = mCs-1N-1
नोट : धात्विक चालक में इलेक्ट्रॉन आवेश वाहक होते है जबकि अर्द्धचालक में इलेक्ट्रॉन और होल दोनों आवेश वाहक की भूमिका निर्वाह करते है। अर्द्धचालक में इलेक्ट्रॉन की कमी ही होल होती है तथा ये धनावेश की तरह व्यवहार करते है। यदि होल का द्रव्यमान mh द्वारा व्यक्त करे तथा औसत श्रान्तिकाल τh से व्यक्त करे तो होलों की गतिशीलता निम्नलिखित सूत्र से प्राप्त होगी –
µh = eτh/mh
यह ध्यान देने की बात है कि इलेक्ट्रॉनों और होलो दोनों की गतिशीलता धनात्मक है लेकिन दोनों के अनुगमन वेग विपरीत दिशा में होंगे।
उदाहरण : 0.1 मीटर लम्बाई के चालक के सिरों के मध्य 5V का विभवान्तर लगाया जाता है। इलेक्ट्रॉनों का अनुगमन वेग 2.5 x 10-4 ms-1 है। इलेक्ट्रॉनों की गतिशीलता की गणना कीजिये।
हल : दिया है , विभवान्तर V = 5 वोल्ट , l = 0.1 m , Vd = 2.5 x 10-4 ms-1 , µe = ?
चालक के सिरों के मध्य विद्युत क्षेत्र की तीव्रता –
E = v/l = 5/0.1 = 50 Vm-1
अत: इलेक्ट्रॉनों की गतिशीलता
µe = vd/E = 2.5 x 10-4/50
µe = 5 x 10-6 m2v-1s-1
ओम का नियम (ohm’s law)
सन 1826 में जर्मन वैज्ञानिक डॉ. जोर्ज साइमन ओम (georg simon ohm) ने किसी चालक के सिरों पर लगाये गए विभवान्तर और उसमें प्रवाहित होने वाली वैद्युत धारा का सम्बन्ध एक नियम द्वारा व्यक्त किया जिसे ओम का नियम कहते है। इस नियम के अनुसार , “यदि किसी चालक की भौतिक अवस्था (जैसे ताप , लम्बाई , क्षेत्रफल आदि) न बदले तो उसके सिरों पर लगाये गए विभवान्तर और उसमें बहने वाली धारा का अनुपात नियत रहता है। “
माना यदि चालक के सिरों पर v विभवान्तर लगाने पर उसमें i धारा बहे तो ओम के नियम से –
V/i = नियतांक
इस नियतांक को चालक का विद्युत प्रतिरोध कहते है तथा इसे R से व्यक्त करते है।
अत:
V/i = R
इस सूत्र से , V = R.i
अथवा V ∝ i या i ∝ V
अर्थात किसी चालक में बहने वाली धारा चालक पर लगाये गए विभवान्तर के समानुपाती होती है , यदि चालक की भौतिक अवस्थाएँ न बदली जाए।
चूँकि v ∝ i , i ∝ v या v ∝ i
अत: V और i के मध्य खिंचा गया ग्राफ एक सरल रेखा होगी।
मुक्त इलेक्ट्रॉन सिद्धांत अथवा अनुगमन वेग के आधार पर ओम के नियम की व्याख्या – अनुगमन वेग और विभवान्तर में सम्बन्ध –
vd = eτ/m .V/l . . . . .. . . समीकरण-1
इसी प्रकार अनुगमन वेग और धारा में निम्नलिखित सम्बन्ध होता है –
vd = i/Ane . . . . . . . समीकरण-2
समीकरण-1 और समीकरण-2 से –
eτ/m .V/l = i/Ane
अथवा V = ml i/eτ.Ane
अथवा V = (m/ne2τ).(l/A).i . . . . . . . समीकरण-3
या V = ρ.l.i/A
जहाँ ρ = m/ne2τ , चालक के पदार्थ की विशेषता है , अत: इसे चालक के पदार्थ का विशिष्ट प्रतिरोध कहते है। इसका मान एक पदार्थ के लिए नियत होता है।
यदि चालक की भौतिक अवस्थाएं न बदले तो l और A भी नियत रहेंगे , अत:
ρ.l/A = नियतांक = R (चालक का प्रतिरोध)
अत: V = R.i
अथवा V ∝ i या i ∝ V
अर्थात किसी चालक में बहने वाली धारा उस पर लगाये गए विभवान्तर के अनुक्रमानुपाती होती है , बशर्तें की चालक की भौतिक अवस्थाएँ न बदलें।
यही ओम का नियम है।
ओम के नियम का सदिश रूप (vector form of ohms law)
समीकरण से –
V = (m/ne2τ).(l/A).i
V/l = (m/ne2τ).(i/A)
यहाँ v/l = विद्युत क्षेत्र
i/A = धारा घनत्व
यहाँ m/ne2τ विशिष्ट प्रतिरोध
या E = m/ne2τ .j
या
E = ρ.j
j = E/ρ
j = σ.E
अत: 1/ρ = विशिष्ट चालकता
जिसे σ (सिग्मा) से प्रदर्शित करते है
σ = 1/ρ
यही ओम के नियम का सदिश रूप और धारा घनत्व तथा विद्युत क्षेत्र में सम्बन्ध है।
ओम के नियम की असफलता (failure of ohm’s law) : ओम का नियम प्रकृति का मूल नियम नहीं है। अनेक स्थितियों में सम्बन्ध –
V = IR
का पालन पूर्णतया नहीं होता है तथा ये स्थितियां ही ओम के नियम की असफलता की जनक है। इनमें से कुछ स्थितियाँ निम्नलिखित है –
1. विभवान्तर धारा के साथ अरैखिक रूप से बदल सकता है : धात्विक चालक के सिरों पर उत्पन्न विभवान्तर , धारा के साथ बिन्दुवत रेखा के अनुसार रैखिक रूप से बदलना चाहिए परन्तु विभवान्तर को लगातार बढाते रहने पर धारा का वास्तविक परिवर्तन मोटी रेखा के अनुसार होता है। इस परिवर्तन का कारण धारा का उष्मीय प्रभाव है। लगातार धारा बढ़ने से चालक का प्रतिरोध बढ़ जाता है।
2. विभवान्तर के साथ धारा का परिवर्तन लगाये गए विभवान्तर के चिन्ह पर निर्भर कर सकता है : जब PN संधि या अर्द्धचालक पर लगाये गए विभवान्तर (अभिनति) का चिन्ह बदल देते है तो विभवान्तर के साथ धारा का परिवर्तन बदल जाता है। जब PN संधि के p सिरे को बैट्री के धन ध्रुव से और n सिरे को ऋण ध्रुव से जोड़ते है , अर्थात अग्र अभिनति लगाते है तो धारा तेजी से बदलती है तथा इसकी विपरीत वोल्टता अर्थात उत्क्रम अभिनति लगाने पर धारा परिवर्तन की दर बहुत कम हो जाती है।
3. विभवान्तर के बढाने पर धारा घट सकती है। : एक थाइरिस्टर में p और n प्रकार के अर्द्धचालकों की क्रमागत चार परतें होती है।
थाइरिस्टर के लिए V-I ग्राफ (अग्र और उत्क्रम दोनों अभिनतियों के लिए) में दिखाया गया है। ग्राफ का AB भाग यह व्यक्त करता है कि विभवान्तर घटाने पर धारा का मान बढ़ता है।
यह थाइरिस्टर के ऋणात्मक प्रतिरोध क्षेत्र के संगत है। यहाँ ध्यान देने की बात यह है कि थाइरिस्टर में विभवान्तर बदलने पर धारा का परिवर्तन अरैखिक तो है ही , साथ ही साथ धारा परिवर्तन का परिमाण विभवान्तर के चिन्ह पर भी निर्भर करता है।
नोट :
अनओमीय चालक : वे चालक जो ओम के नियम का पालन नहीं करते है उन्हें अनओमीय चालक कहते है ; जैसे – डायोड , ट्रायोड , ट्रांजिस्टर आदि।