JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now

हिंदी माध्यम नोट्स

Class 6

Hindi social science science maths English

Class 7

Hindi social science science maths English

Class 8

Hindi social science science maths English

Class 9

Hindi social science science Maths English

Class 10

Hindi Social science science Maths English

Class 11

Hindi sociology physics physical education maths english economics geography History

chemistry business studies biology accountancy political science

Class 12

Hindi physics physical education maths english economics

chemistry business studies biology accountancy Political science History sociology

Home science Geography

English medium Notes

Class 6

Hindi social science science maths English

Class 7

Hindi social science science maths English

Class 8

Hindi social science science maths English

Class 9

Hindi social science science Maths English

Class 10

Hindi Social science science Maths English

Class 11

Hindi physics physical education maths entrepreneurship english economics

chemistry business studies biology accountancy

Class 12

Hindi physics physical education maths entrepreneurship english economics

chemistry business studies biology accountancy

Categories: Physics

विस्थापन धारा की परिभाषा क्या है ? मात्रक , सूत्र , विस्थापन धारा के गुण displacement current in hindi

displacement current in hindi , विस्थापन धारा की परिभाषा क्या है ? मात्रक , सूत्र , विस्थापन धारा के गुण :-

विद्युत चुम्बकीय तरंग [संचार एवं समकालीन भौतिकी] :

विस्थापन धारा (Id) : एम्पियर के परिपथ के नियम के अनुसार किसी बंद लूप के अनुदिश चुम्बकीय क्षेत्र की तीव्रता के रेखीय समाकलन का मान उस बंद लूप में प्रवाहित कुल धारा तथा निर्वात की चुम्बकशीलता [u0] के गुणनफल के बराबर होती है।

अर्थात

∫B.dl = u0Σ I

एम्पियर का परिपथ नियम केवल चालक तारो के लिए ही सत्य है। मैक्सवेल नामक वैज्ञानिक ने एम्पीयर के परिपथीय नियम में कुछ विसंगतियाँ पाई इन विसंगतियो को समझाने के लिए एम्पीयर ने एक संधारित्र युक्त विद्युत परिपथ की कल्पना की तथा इस संधारित्र युक्त परिपथ में दो बंद लूप Sव S2 की कल्पना की। S1 लूप संधारित्र की प्लेट के बायीं ओर स्थित है जबकि S2 लूप संधारित्र की प्लेटो के मध्य स्थित है।

S1 लूप के लिए एम्पीयर का परिपथीय नियम –

s1 B.dl = u0Σ I

S2 लूप के लिए एम्पीयर का परिपथीय नियम –

s2 B.dl = u0(0) = 0

मैक्सवेल ने इस चित्र के अनुसार देखा की संधारित्र युक्त एक ही परिपथ में एम्पीयर के परिपथीय नियम का मान विरोधाभास है , इस विरोधाभास को दूर करने के लिए मैक्सवेल ने संधारित्र की प्लेटो के मध्य एक अतिरिक्त धारा की कल्पना की , जिसे विस्थापन धारा कहा गया।

माना संधारित्र के आवेशन या निरावेशन के दौरान किसी समय t पर प्लेटों पर आवेश q है। यदि प्रत्येक प्लेट का क्षेत्रफल A हो तो प्लेट का पृष्ठ

आवेश घनत्व σ = q/A समीकरण-1

प्लेटो के मध्य परिणामी विद्युत क्षेत्र की तीव्रता –

E = σ/E0  समीकरण-2

समीकरण-1 का मान समीकरण-2 में रखने पर –

E = q/AE0   समीकरण-3

यदि प्लेटो के मध्य विद्युत क्षेत्र परिवर्ती विद्युत क्षेत्र हो तो –

d(E)/dt = d(q/AE0)/dt

d(E)/dt = (1/AE0) dq/dt

AE0 (d(E)/dt) = dq/dt

Ed(EA)/dt = dq/dt

चूँकि ΦE = EA

E0d ΦE/dt = dq/dt  समीकरण-4

समीकरण-4 से स्पष्ट है कि RHS (दायाँ हाथ का पक्ष) पक्ष में स्थित पद dq/dt धारा को प्रदर्शित करता है तथा LHS (बाएं हाथ का पक्ष) में स्थित पद E0d ΦE/dt  की विमा धारा की विमा के समान है।

अत: इससे यह स्पष्ट होता है कि संधारित्र के आवेशन या निरावेशन के दौरान प्लेटो के मध्य परिवर्ती विद्युत क्षेत्र उत्पन्न होता है। संधारित्र की प्लेटो के मध्य परिवर्ति विद्युत क्षेत्र के कारण एक विशेष प्रकार की धारा प्रवाहित होती है जिसे विस्थापन धारा कहते है।

अत: संधारित्र की प्लेटो के मध्य विस्थापन धारा –

विस्थापन धारा (Id)  = E0E/dt

विस्थापन धारा के गुण

  1. संयोजी तार में प्रवाहित चालन धारा तथा संधारित्र की प्लेटों के मध्य प्रवाहित विद्युत धारा दोनों परिमाण में समान होती है। [Ic = Id]
  2. चालन धारा (Ic) संयोजी तार में आवेश वाहको के प्रवाह के कारण प्रवाहित होती है जबकि विस्थापन धारा समान्तर प्लेट संधारित्र की प्लेटो के मध्य परिवर्ति विद्युत क्षेत्र के कारण प्रवाहित होती है।
  3. चालन धारा व विस्थापन धारा किसी परिपथ में सतत होती है परन्तु अलग अलग रूप से असतत होती है।
  4. संधारित्र की प्लेटों के मध्य प्लेटों के चारों ओर विस्थापन धारा के कारण चुम्बकीय क्षेत्र उत्पन्न होता है जो ठीक उसी प्रकार होता है जिस प्रकार किसी चालक तार में प्रवाहित धारा के कारण उसके चारों ओर होता है।

एम्पियर के परिपथीय नियम का संशोधित नियम : इस नियम के अनुसार किसी बंद लूप के अनुदिश चुम्बकीय क्षेत्र की तीव्रता के रेखीय समाकलन का मान उस बंद लूप में प्रवाहित चालन धारा व विस्थापन धारा को योग तथा निर्वात की चुम्बकशीलता E0 के गुणनफल के बराबर होता है।

अर्थात

∫B.dl = u0(Ic + Id)

या

∫B.dl = u0(Ic + E0E/dt)

एम्पीयर के परिपथीय नियम के संशोधित नियम को मैक्सवेल ने दिया इसलिए इस नियम को मैक्सवेल एम्पियर का नियम भी कहते है।

मेक्सवैल की समीकरण

जेम्स कलार्क नामक वैज्ञानिक ने स्थिर विध्युतिकी व स्थिर चुम्बकत्व के मध्य संबंधो को अवकल समीकरणों के रूप में गणितीय रूप दिया जिसे मैक्सवेल की समीकरण कहते है।

मैक्सवैल की निम्न चार समीकरण है –

  1. स्थिर विद्युतिकी में गाउस का नियम: इस नियम के अनुसार निर्वात या वायु में स्थित किसी काल्पनिक बंद पृष्ठ से सम्बन्ध विद्युत फ्लक्स का मान उसे बन्द पृष्ठ से परिबद्ध कुल आवेश तथा 1/E0के गुणनफल के बराबर होता है।

∫E.ds = Σq/E0

मैक्सवेल का यह समीकरण समय पर आश्रित नहीं होता है तथा यह समीकरण स्पष्ट करता है कि विद्युत बल रेखायें खुले वक्र का निर्माण करती है।

  1. स्थिर चुम्बकत्व के लिए गाउस का नियम: इस नियम के अनुसार किसी बंद पृष्ठ से सम्बन्ध चुम्बकीय क्षेत्र के बंद रेखीय समाकलन का मान सदैव शून्य होता है।

∫B.ds =  0

मैक्सवेल की यह समीकरण समय पर आश्रित नहीं है। यह समीकरण स्पष्ट करती है की किसी चुम्बक के एकल ध्रुव का अस्तित्व नहीं होता अर्थात चुम्बकीय बल रेखाएँ सदैव बंद वक्र का निर्माण करती है।

  1. विद्युत चुम्बकीय प्रेरण के लिए फैराडे का नियम: इस नियम के अनुसार किसी बंद परिपथ के सिरों पर उत्पन्न प्रेरित विद्युत वाहक बल का मान बंद परिपथ से सम्बन्ध चुम्बकीय फ्लक्स में परिवर्तन की दर के ऋणात्मक मान के बराबर होता है।

E = -dΦm/dt

या

E = -d[∫B.ds]/dt

मैक्सवेल का यह समीकरण समय आश्रित होता है। यह समीकरण प्रदर्शित करता है कि चुम्बकीय क्षेत्र में समय के साथ परिवर्तन होने के कारण विद्युत क्षेत्र उत्पन्न होता है।

  1. मैक्सवेल एम्पियर का नियम: इस नियम के अनुसार किसी बंद लूप के अनुदिश चुम्बकीय क्षेत्र की तीव्रता के बंद रेखीय समाकलन का मान उस बंद लूप में प्रवाहित चालन धारा तथा विस्थापन धारा के योग तथा निर्वात की चुम्बकशीलता u के गुणनफल के बराबर होता है।

अर्थात

∫B.dl = u0(Ic + Id)

या

∫B.dl = u0(Ic + AE0 dΦE/dt)

मैक्सवेल का यह समीकरण समय आश्रित होता है। यह समीकरण स्पष्ट करता है कि समय के साथ विद्युत क्षेत्र में परिवर्तन के कारण चुम्बकीय क्षेत्र उत्पन्न होता है।

हम जानते है कि विद्युत धारा अर्थात गतिशील आवेश , चुम्बकीय क्षेत्र उत्पन्न करती है तथा आवेश का प्रवाह रुकते ही चुम्बकत्व समाप्त हो जाता है। दो धारावाही चालक तार एक दुसरे पर चुम्बकीय बल (आकर्षण/प्रतिकर्षण) लगाते है। समय के साथ परिवर्तनशील चुम्बकीय क्षेत्र वैद्युत क्षेत्र उत्पन्न करता है। इसके विलोम की संभावना पर विचार करते हुए वैज्ञानिक जेम्स क्लार्क मैक्सवेल (1831-1879) ने बताया कि वास्तव में इसके विपरीत भी सत्य है अर्थात न केवल विद्युत धारा बल्कि समय के साथ परिवर्तनशील विद्युत क्षेत्र भी चुम्बकीय क्षेत्र उत्पन्न करता है। समय के साथ परिवर्तनशील धारा से जुड़े संधारित्र के बाहर किसी बिंदु पर चुम्बकीय क्षेत्र ज्ञात करने के लिए एम्पियर का नियम लगाते समय , मैक्सवेल का ध्यान इस नियम से सम्बन्धित एक असंगति की ओर गया। इस असंगति को दूर करने के लिए उन्होंने एक अतिरिक्त धारा के अस्तित्व का सुझाव दिया जिसको उन्होंने विस्थापन धारा का नाम दिया। उन्होंने विद्युत और चुम्बकीय क्षेत्रों और उनके स्रोतों (आवेश और धारा घनत्व) को शामिल करके समीकरणों का एक समुच्चय सूत्र बद्ध किया जिसे मैक्सवेल समीकरण कहते है। इसके साथ लोरेन्स का बल सूत्र और मिला ले तो ये समीकरण विद्युत चुम्बकत्व के सभी आधारभूत नियमों को गणितीय रूप में व्यक्त करते है।

मैक्सवेल के समीकरणों का सबसे महत्वपूर्ण पहलू वैद्युत चुम्बकीय तरंगों का अस्तित्व होना है जो अन्तरिक्ष में संचरित समय के साथ परिवर्तित (युग्मित) होने वाले विद्युत और चुम्बकीय क्षेत्र है। मैक्सवेल समीकरणों के अनुसार इन तरंगों की चाल प्रकाश की चाल (3 x 108 m/s) के लगभग बराबर है। इससे निष्कर्ष यह निकलता है कि प्रकाश भी विद्युत चुम्बकीय तरंग है। इस प्रकार मैक्सवेल के कार्य ने विद्युत , चुम्बकत्व और प्रकाश के क्षेत्रों का एकीकरण कर दिया। इसके बाद सन 1885 में हर्ट्ज़ ने प्रयोग द्वारा विद्युत चुम्बकीय तरंगों के अस्तित्व को प्रदर्शित किया। इसके बाद मार्कोनी और अन्य आविष्कर्ताओं ने यथा समय इसके तकनिकी उपयोग के द्वारा संचार के क्षेत्र में क्रांतिकारी योगदान दिया।

Sbistudy

Recent Posts

four potential in hindi 4-potential electrodynamics चतुर्विम विभव किसे कहते हैं

चतुर्विम विभव (Four-Potential) हम जानते हैं कि एक निर्देश तंत्र में विद्युत क्षेत्र इसके सापेक्ष…

3 days ago

Relativistic Electrodynamics in hindi आपेक्षिकीय विद्युतगतिकी नोट्स क्या है परिभाषा

आपेक्षिकीय विद्युतगतिकी नोट्स क्या है परिभाषा Relativistic Electrodynamics in hindi ? अध्याय : आपेक्षिकीय विद्युतगतिकी…

4 days ago

pair production in hindi formula definition युग्म उत्पादन किसे कहते हैं परिभाषा सूत्र क्या है लिखिए

युग्म उत्पादन किसे कहते हैं परिभाषा सूत्र क्या है लिखिए pair production in hindi formula…

7 days ago

THRESHOLD REACTION ENERGY in hindi देहली अभिक्रिया ऊर्जा किसे कहते हैं सूत्र क्या है परिभाषा

देहली अभिक्रिया ऊर्जा किसे कहते हैं सूत्र क्या है परिभाषा THRESHOLD REACTION ENERGY in hindi…

7 days ago

elastic collision of two particles in hindi definition formula दो कणों की अप्रत्यास्थ टक्कर क्या है

दो कणों की अप्रत्यास्थ टक्कर क्या है elastic collision of two particles in hindi definition…

7 days ago
All Rights ReservedView Non-AMP Version
X

Headline

You can control the ways in which we improve and personalize your experience. Please choose whether you wish to allow the following:

Privacy Settings
JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now