विमाएँ एवं विमीय विश्लेषण , विमा ज्ञात करने का तरीका या विधि dimensions and dimensional analysis

विमाएँ एवं विमीय विश्लेषण (dimensions and dimensional analysis) : किसी भी मात्रक की विमा यह दर्शाती है की यह किस प्रकार का मापन है जैसे ग्राम , किलोग्राम , पाउण्ड आदि सभी द्रव्यमान के अलग अलग मात्रक है लेकिन सभी मात्रक केवल द्रव्यमान के लिए उपयोग किये जाते है इसलिए इन सबकी विमा समान होगी।

किसी भी मात्रक की विमा लिखने के लिए इसे वर्ग ब्रेकेट में लिखा जाता है जैसे द्रव्यमान की विमा लिखने के लिए [M] लिखा जाता है , इसी प्रकार समय की विमा लिखने के लिए [T] लिखा जाता है।

हम पिछले टॉपिक में पढ़ चुके है की द्रव्यमान , लम्बाई , समय , विद्युत धारा , ताप आदि को मूल राशियों की श्रेणी में रखा गया है , इन मात्रको की विमाओं का उपयोग कर सभी अन्य व्युत्पन्न राशियों की विमा लिखी जाती है।

द्रव्यमान , लम्बाई , समय मूल राशियों की विमा क्रमशः [M] , [L] , [T]

जैसे यदि हमें क्षेत्रफल की विमा ज्ञात करनी है तो सबसे पहले इसे मूल राशि के रूप में लिखना होता है –

क्षेत्रफल = लम्बाई x चौड़ाई

अब हम जानते है की लम्बाई व चौड़ाई की विमा L होती है

अत: क्षेत्रफल = L x L = L2

अत: क्षेत्रफल की विमा L2 होगी।

इसी प्रकार आयतन = लम्बाई x चौड़ाई x ऊँचाई

हम पढ़ चुके है की सभी प्रकार की लम्बाई के लिए विमा L होती है।

अत: आयतन = L x L x L

अत: आयतन की विमा = L3 होगी।

यदि हमें किसी भी सूत्र या समीकरण के लिए विमा ज्ञात करनी होती है तो सबसे पहले हमें भौतिक राशियों में आपस में सम्बन्ध स्थापित करना आना चाहिए , सूत्र या समीकरण को मूल राशियों के रूप में लिखकर प्रत्येक मूल राशि की विमा रखकर हल करने से हमें उस सूत्र या समीकरण की विमा प्राप्त होती है।

जैसे यदि हमें घनत्व की विमा ज्ञात करनी है तो सबसे पहले घनत्व को अन्य भौतिक राशियों के रूप में लिखना पड़ेगा

घनत्व = द्रव्यमान / आयतन

हम आयतन की विमा ज्ञात कर चुके है L3 होती है तथा द्रव्यमान की विमा M होती है , दोनों मान रखने पर

घनत्व की विमा = M /L3

किसी भी भौतिक राशि को विमीय रूप में दर्शाने के लिए M , L व T के रूप में लिखा जाता है , यदि सूत्र या समीकरण में M,L व T में से कोई राशि अनुपस्थित हो तो इसे 0 घात से लिखते है।

जैसे घनत्व = M /L3 या M1L-3

इसे सुविधा के लिए [M1L-3T0] लिखा जाता है।

किसी भी स्थिर राशि या नियतांक विमहीन राशि होती है।

उदाहरण –

बल की विमा लिखिए

बल (F) = द्रव्यमान (m) x त्वरण (a) . . . . . . . . . . . . समीकरण (1)

द्रव्यमान की विमा = M तथा त्वरण = चाल में हुआ परिवर्तन / समय

त्वरण = चाल / समय   . . . . . . . . . . समीकरण (2)

चाल की विमा = दूरी / समय

चाल = L/T या LT-1

चाल की विमा समीकरण (2) में रखने पर

त्वरण = LT-1/T  या  LT-2 

त्वरण की विमा के मान को समीकरण (1) में रखने पर

बल (F) = M x LT-2

अत: बल की विमा M1L1T-2 होगी।

 

 

2 thoughts on “विमाएँ एवं विमीय विश्लेषण , विमा ज्ञात करने का तरीका या विधि dimensions and dimensional analysis”

Leave a Reply

Your email address will not be published. Required fields are marked *