संघट्ट सिद्धांत (collision theory) , ऊर्जा अवरोधक , अभिविन्यास अवरोधक , अभिक्रिया वेग की ताप पर निर्भरता 

By  
संघट्ट सिद्धांत (collision theory) : यह सिद्धान्त मैक्स ट्राउज व विलियम लेविस नामक वैज्ञानिक ने दिया।  यह सिद्धांत गैसों के गतिक सिद्धान्त पर आधारित है। इस सिद्धांत के मुख्य बिंदु निम्न है –

  • इसके अनुसार किसी अभिक्रिया में अभिकारक अणुओं को ठोस गोले के रूप में माना गया है।  इन अभिकारक अणुओं या ठोस गोले के आपस में टक्कराने से अभिक्रिया संपन्न होती है।
  • अभिक्रिया मिश्रण के प्रति इकाई आयतन में प्रति सेकंड अभिकारक अणुओं के मध्य होने वाली टक्करो की संख्या संघट्ट आवृति कहलाती है।
  • अभिक्रिया में अभिकारक अणुओ के आपस में टक्कराने से अभिक्रिया वेग बढ़ता है लेकिन अभिक्रिया का वेग टक्करो की संख्या बढ़ने के अनुपात में कुछ कम बढ़ पाता है। क्योंकि सभी टक्करे प्रभावी नहीं होती है।
  • प्रभावी टक्करो से तात्पर्य अभिकारक अणुओं के उचित अभिविन्यास में टकराने से अर्थात प्रभावी टक्कर से ही अभिकारक अणु उत्पाद में बदल पाते है। अत: किसी रासायनिक अभिक्रिया के संपन्न होने में दो अवरोध पार करने होते है (1) ऊर्जा अवरोधक  (2) अभिविन्यास अवरोधक
(1) ऊर्जा अवरोधक : किसी अभिक्रिया में अभिकारक अणुओं को उत्पाद में परिवर्तित होने के लिए आवश्यक न्यूनतम ऊर्जा देहली ऊर्जा कहलाती है।
इस देहलीज ऊर्जा के बराबर या इससे अधिक ऊर्जा रखने वाले अभिकारक अणु ही उत्पाद में बदलते है अत: देहली ऊर्जा एक ऊर्जा अवरोधक है।
(2) अभिविन्यास अवरोधक : अभिकारक अणुओं के उचित अभिविन्यास में टकराने से ही प्रभावी टक्कर होती है और प्रभावी टक्कर के कारण अभिकारक से उत्पाद बनते है इसलिए उचित अभिविन्यास भी अवरोधक है।
अत: रासायनिक अभिक्रिया का वेग दो कारको के समानुपाती होता है – पहले संघट्ट आवृत्ति (Z) और दूसरा संघट्ट का अंश (F)
अभिक्रिया वेग = dx/dt = ZF (समीकरण 1)
समीकरण-1 में F = N*/N = e-Ea/RT रखने पर
अभिक्रिया वेग = Ze-Ea/RT (समीकरण-2)
समीकरण 2 , संघट्ट वाद की समीकरण है।
इस समीकरण द्वारा प्राप्त मान सरल अभिक्रियाओ के प्रायोगिक मान से तो मेल खाते है। लेकिन जटिल अभिक्रियाओ के लिए नही।
अत: इस समीकरण को संशोधित करके निम्न समीकरण दी गयी –
अभिक्रिया वेग = P.Ze-Ea/RT (समीकरण-3)
समीकरण 3 संशोधित संघट्टवाद की समीकरण है।

अभिक्रिया वेग की ताप पर निर्भरता

ताप बढाने से रासायनिक अभिक्रिया का वेग बढ़ता है एक सामान्य प्रेक्षण के अनुसार 10 डिग्री सेल्सियस की वृद्धि से अभिक्रिया वेग लगभग दो से तीन गुना बढ़ जाता है।
ताप वृद्धि से अभिक्रिया वेग में वृद्धि के दो कारण है –
1. संघट्ट आवृत्ति का बढ़ना
2. प्रभावी संघट्ट की संख्या बढ़ना
ताप गुणांक : 10 डिग्री सेल्सियस ताप के अन्तर पर किसी अभिक्रिया के दो वेग स्थिरांको का अनुपात ताप गुणांक कहलाता है।
ताप गुणांक = (t+10)C ताप पर वेग स्थिरांक/t’C ताप पर वेग स्थिरांक  = 2 से 3 गुना

मैक्स वेल वोल्ट्समैन ऊर्जा वितरण वक्र

एक अभिक्रिया में सभी अभिकारक अणुओं की गतिज ऊर्जा एक समान नहीं होती है अत: किसी एक अभिकारक अणु की गतिज ऊर्जा के आधार पर अभिक्रिया वेग का निर्धारण नहीं कर सकते है इसलिए मैक्सवेल व वोल्ट्समेन वैज्ञानिको ने इसे समझाने के लिए गतिज ऊर्जा व गतिज ऊर्जा धारित अभिकारक अणुओं के अंश के मध्य एक वक्र दिया जो निम्न प्रकार है –
इस वक्र से स्पष्ट है कि अभिक्रिया में कम गतिज ऊर्जा एवं अधिक गतिज ऊर्जा रखने वाले अभिकारक अणुओं का अंश कम है जबकि मध्य गतिज ऊर्जा रखने वाले अभिकारक अणुओं का अंश अधिक है।  इस मध्यम गतिज ऊर्जा को ही अति सम्भाव्य गतिज ऊर्जा कहते है।
यहाँ E = देहली ऊर्जा।  इस देहली ऊर्जा के बराबर या अधिक ऊर्जा रखने वाले अभिकारक अणुओ में प्रभावी संघट्ट होती है तथा उत्पाद बनता है।
यदि अभिक्रिया में देहली ऊर्जा का मान अधिक है तो प्रभावी अणुओं का अंश कम होगा अत: अभिक्रिया वेग कम होगा लेकिन यदि देहली ऊर्जा का मान कम हो तो प्रभावी अणुओं का अंश अधिक होगा अत: अभिक्रिया वेग भी अधिक होगा।
ताप वृद्धि से अभिक्रिया वेग में वृद्धि को भी वक्र से समझ सकते है।
इस वक्र से स्पष्ट है कि ताप बढाने पर अभिकारक अणुओं की गतिज ऊर्जा बढ़ जाती है इसलिए यह वक्र दायींनी ओर खिसक जाता है लेकिन इसका क्षेत्रफल समान होता है।  10 डिग्री सेल्सियस ताप बढ़ाने पर देहली ऊर्जा से अधिक ऊर्जा रखने वाले अभिकारक अणुओं का अंश लगभग दो से तीन गुना बढ़ जाता है इसलिए 10 डिग्री सेल्सियस ताप बढाने पर अभिक्रिया वेग भी दो से तीन गुना बढ़ जाता है।
देहली ऊर्जा व सक्रियण ऊर्जा में सम्बन्ध :
देहली ऊर्जा : रासायनिक अभिक्रिया में अभिकारक अणुओं को उत्पाद में बदलने के लिए आवश्यक न्यूनतम ऊर्जा ही देहली ऊर्जा कहलाती है।
सक्रियण ऊर्जा : देहली ऊर्जा से कम ऊर्जा रखने वाले अभिकारक अणुओं को उत्पाद में बदलने के लिए जितनी न्यूनतम अतिरिक्त ऊर्जा की आवश्यकता होती है , उसे सक्रियण ऊर्जा कहते है।
देहली ऊर्जा व सक्रियण ऊर्जा में निम्न सम्बन्ध होता है –
देहली ऊर्जा = औसत उर्जा +सक्रियण ऊर्जा
सक्रियण ऊर्जा को जूल/मोल में मापते है।
किसी अभिक्रिया के लिए संक्रियण ऊर्जा का मान कम है तो उसका अभिक्रिया वेग अधिक होगा।
सक्रियण ऊर्जा अभिकारक अणुओं के आपस में टकराने से प्राप्त होती है।