Magnetic Field on the axis of current carrying circular coil in hindi वृत्ताकार धारावाही कुण्डली की अक्ष पर चुम्बकीय क्षेत्र : हम पिछले टॉपिक में वृत्ताकार कुण्डली के केन्द्र पर चुम्बकीय क्षेत्र का अध्ययन कर चुके है और इसके सूत्र की स्थापना कर चुके है अब बात करते कुंडली के अक्ष पर चुंबकीय क्षेत्र कितना होगा और इसका सूत्र क्या होगा।
माना किसी a त्रिज्या वाली वृताकार कुंडली में I विद्युत धारा प्रवाहित हो रही है , इस कुण्डली के कारण x दूरी पर स्थित किसी बिन्दु P पर हमें चुम्बकीय क्षेत्र ज्ञात करना है।
कुण्डली द्वारा P बिंदु बनाया गया अंतरित अर्द्ध शीर्ष कोण θ है। कुण्डली की व्यास AB की लम्बाई L है।
सम्पूर्ण वृत्ताकार कुंडली के कारण P पर चुंबकीय क्षेत्र का मान ज्ञात करने के लिए कुण्डली को अल्पांश में विभाजित कर सभी अल्पांश के कारण P पर चुंबकीय क्षेत्र की गणना कर सबको आपस में जोड़ने से हमें P पर सम्पूर्ण कुंडली के कारण कुल चुंबकीय क्षेत्र का मान प्राप्त हो जायेगा।
हमने चित्रानुसार बिंदु A तथा B पर दो अल्पांश dl लिए है , तथा बिंदु A तथा B की P तक की दुरी r है। हम बायो सावर्ट का नियम प्रयोग करके इन अल्पाँशो के कारण P पर चुंबकीय क्षेत्र की गणना करेंगे तत्पश्चात कुल चुम्बकीय क्षेत्र का मान ज्ञात करेंगे।
दोनों अल्पाँशो के कारण P पर चुंबकीय क्षेत्र
चूँकि यहाँ cos वाले घटक परिमाण में समान तथा दिशा में विपरीत है अतः ये एक दूसरे को निरस्त कर देते है।
अतः बायो सावर्ट का नियम से सम्पूर्ण कुण्डली के कारण बिन्दु P पर चुम्बकीय क्षेत्र का मान ज्ञात करने के लिए अल्पांश वाले मान को 0 से 2πa तक समाकलन कर देते है क्योंकि कुंडली की परीधि 2πa है।
अतः P पर कुल चुम्बकीय क्षेत्र
यदि कुंडली में फेरों की संख्या N हो तो , P बिंदु पर उत्पन्न कुल चुम्बकीय क्षेत्र