सब्सक्राइब करे youtube चैनल
Magnetic field due to current carrying long cylindrical conductor लम्बे बेलनाकार धारावाही चालक के कारण चुम्बकीय क्षेत्र : हमने अनन्त लम्बाई के सीधे धारावाही चालक के कारण चुम्बकीय क्षेत्र के बारे में अध्ययन कर लिया है , अब हम बात करते है की एक लम्बे बेलनाकार धारावाही चालक के कारण कितना चुंबकीय क्षेत्र उत्पन्न होता है तथा इसके लिए हम सूत्र की स्थापना भी करेंगे।

माना चित्रानुसार एक बेलनाकार चालक है जिसकी त्रिज्या R है , इस धारावाही चालक में I परिमाण की विद्युत धारा प्रवाहित हो रही है।
यह धारा धारावाही चालक के सम्पूर्ण काट क्षेत्रफल में समान रूप से वितरित है।
इस बेलनाकार धारावाही चालक से r दुरी पर किसी बिंदु पर हमें चुम्बकीय क्षेत्र की गणना करनी है।
चूँकि हमने बताया की सम्पूर्ण क्षेत्र में धारा का वितरण समान है अतः चुम्बकीय क्षेत्र वृत्ताकार रेखाओं के रूप में होगा , इन चुंबकीय क्षेत्र की वृत्ताकार रेखाओं का केंद्र चालक के अक्ष पर ही होगा।
हम इस बेलनाकार धारावाही चालक के कारण r दूरी पर स्थित बिंदु पर चुम्बकीय क्षेत्र ज्ञात कर रहे , इस बिंदु की भी तीन स्थितियां हो सकती है , हम तीनों स्थितियों में चुंबकीय क्षेत्र की गणना करते है।

1. जब बिन्दु बेलनाकार चालक के बाहर स्थित हो

जब बिंदु चालक के बाहर स्थित हो तो इस स्थिति में r > R होगा , इस स्थिति में हम r त्रिज्या के बन्द वृत्ताकार पथ की कल्पना करते है , चूँकि चालक में धारा नियत है अतः चुम्बकीय क्षेत्र भी नियत होगा अतः यहाँ एम्पीयर का नियम लगा सकते है
एम्पीयर का नियम लगाने पर

B.dl  = μΣI
B (चुम्बकीय क्षेत्र) तथा अल्पांश (dl) के मध्य कोण θ है तो

B.dl cosθ  = μΣI
मान लेते है θ = 0 तथा ΣI = I

अतः
B.dl  = μI
dl = l = 2πr (चूँकि वृत्ताकार पथ है तथा त्रिज्या r है )
अतः
B.2πr  = μI
अतः
B = μI /2πr

 2. जब बिन्दु बेलनाकार चालक की सतह पर स्थित हो

जिस बिंदु पर हमे चुम्बकीय क्षेत्र ज्ञात करना है अगर वह बिंदु धारावाही चालक की सतह या परिधि पर स्थित हो तो इस स्थिति में R = r होगा।
अतः ऊपर ज्ञात समीकरण में r के स्थान पर R रखने पर
B = μI /2πR 

3. जब बिन्दु बेलनाकार धारावाही चालक के अन्दर स्थित हो

जब यह बिंदु बेलनाकार चालक के भीतर स्थित हो तो इस स्थिति में r < R होगा।
एम्पीयर के नियम से
B.dl  = μΣI
B (चुम्बकीय क्षेत्र) तथा अल्पांश (dl) के मध्य कोण θ है तो

B.dl cosθ  = μΣI
ΣI लूप में परिबद्ध विद्युत धारा
ΣI  = I πr2
/πR
2

ΣI का मान रखने पर
B.dl  = μΣI
B.dl  = μI r2 /R2 
dl = l = 2πr (चूँकि वृत्ताकार पथ है तथा त्रिज्या r है )
B. 2πr μI r2 /R
B = μI r /R2