जाने KIRCHHOFF’S LAWS in hindi किरचॉफ के नियम क्या है , किरचॉफ का प्रथम नियम या किरचॉफ का धारा का नियम (Kirchhoff’s First Law or Current Law) ?
किरचॉफ के नियम (KIRCHHOFF’S LAWS)
वैज्ञानिक किरचॉफ ने विद्युत परिपथ विश्लेषण के लिये दो मूलभूत नियम दिये जो किसी भी विद्युत जाल (electrical network) में लागू होते हैं। ये नियम आवेश तथा ऊर्जा के संरक्षण को प्रदर्शित करते हैं। इनकी सहायता से किसी भी विन्यास (configuration) के विद्युत जाल की शाखाओं में वोल्टता या धारा को ज्ञात किया जा सकता है । किरचॉफ के नियम निम्न होते हैं:
(i) किरचॉफ का प्रथम नियम या किरचॉफ का धारा का नियम (Kirchhoff’s First Law or Current Law)
इस नियम के अनुसार किसी परिपथ की संधि या नोड (Node) पर कुल विद्युत धाराओं का बीजीय योग (algebraic sum) शून्य होता
है।
अर्थात्
Σi=0 …(1)
(संधि की ओर पहुँचने वाली धाराओं को धनात्मक तथा संधि से बाहर निकलने वाली धाराओं को ऋणात्मक मानते हैं ।)
चित्र (1.2-1)
माना कि पाँच चालक किसी संधि पर मिलते हैं जैसा कि चित्र ( 1.2 – 1 ) में प्रदर्शित किया गया है तथा उन चालकों से बहने वाली धाराओं के मान क्रमशः i1, i2, i3, i4 तथा i5 हैं। इन धाराओं में से धारायें i1 तथा i5 संधि की ओर जा रही हैं इसलिये ये धनात्मक होंगी तथा धारायें i2, i3 तथा i4 संधि से बाहर निकल रही हैं इसलिये ये ऋणात्मक होंगी। अत: किरचॉफ के धारा के नियम के अनुसार,
या
i1 – i2 – i3 − i4 + i5 =0
i1 + i5 = i2 + i3 + i4 ..(2)
इस प्रकार से संधि की ओर जाने वाली धाराओं का योग, संधि से दूर जाने वाली धाराओं के योग के बराबर है। इससे यह ज्ञात होता है कि यदि किसी विद्युत परिपथ में स्थायी धारा (steady current) प्रवाहित हो रही है तो परिपथ के किसी संधि या बिन्दु पर आवेश का संचय (accumulation) नहीं होता है । अर्थात् किरचॉफ का प्रथम नियम या धारा का नियम, आवेश संरक्षण के नियम के तुल्य होता है ।
(ii) किरचॉफ का द्वितीय नियम या किरचॉफ का वोल्टता का नियम (Kirchhoff’s Second Law or Voltage Law)- किरचॉफ के वोल्टता नियम के अनुसार, किसी विद्युत परिपथ के बन्द पाश (closed mesh) में निश्चित दिशा में चलते हुए वोल्टताओं का बीजीय योग शून्य होता है । इस नियम के लिए पाश में निर्दिष्ट धारा की दिशा में वोल्टता पतन धनात्मक व विपरीत दिशा में ऋणात्मक माना जाता है। उदाहरण स्वरूप चित्र (1.2–2) में एक प्रतिरोधात्मक जाल प्रदर्शित किया गया है। इस पाश में प्रतिरोध R व R2 पर वोल्टता पतन क्रमशः
V1 और V2 है जो धारा की निर्दिष्ट दिशा में ही होने से धनात्मक होंगे, बैटरी वोल्टता E1 ऋणात्मक होगी क्योंकि निर्दिष्ट धारा की दिशा में गमन करने पर ऋण ध्रुव से धन ध्रुव की ओर वोल्टता परिवर्तन की गणना करनी है बैटरी वोल्टता E2 इसी के अनुसार धनात्मक होगी। अत: इस पॉश के लिए वोल्टता नियम के अनुसार संधि A से प्रारंभ करने पर
V1 + V2 + E2 – E1 = 0
समीकरण (3) को निम्न रूप में भी लिखा जा सकता है।
V1 + V2 = E1 – E2
अर्थात् बन्द पाश में वोल्टताओं के पतन का बीजीय योग उस पाश में उपस्थित विद्युत वाहक बलों के बीजीय योग के तुल्य होता है। इस रूप (समी. 4) में किरचॉफ के द्वितीय नियम को प्रयुक्त करते समय वि.वा. बल के स्रोत से प्राप्त धारा यदि निर्दिष्ट दिशा में है तो
वह वि.वा. बल धनात्मक लिया जाता है यदि उस स्रोत से प्राप्त धारा विपरीत दिशा में हो तो वह वि.वा. बल ऋणात्मक लिया जाता है। चित्र (1.2-2) में प्रदर्शित पाश में इस प्रकार वि. वा. बल E1 धनात्मक व E2 ऋणात्मक लिया जायेगा। यदि परिपथ में केवल प्रतिरोध व वि.वा बल के स्रोत ही हों तो व्यापक रूप में समी. (4) के अनुसार,
Σv = Σ IR = ΣE
यह नियम ऊर्जा संरक्षण के सिद्धान्त पर आधारित नियम है।
किरचॉफ के नियमों की सहायता से परिपथ विश्लेषण
(CIRCUIT ANALYSIS WITH THE HELP OF KIRCHHOFF’S LAWS)
किरचॉफ के परिपथ नियमों से विभिन्न जालों से सम्बद्ध समस्याओं को हल करने के लिए दो विधियाँ प्राप्त होती हैं। धारा नियम के आधार पर विश्लेषण विधि नोड (node) या संधि (junction) विश्लेषण विधि कहलाती है तथा वोल्टता नियम पर आधारित विधि पाश (mesh) या लूप (loop) विधि कहलाती है। अब हम उदाहरणों की सहायता से इन विधियों का वर्णन करेंगे।
(i) नोड या संधि विश्लेषण (Node or Junction Analysis ) – जब परिपथ के विभिन्न नोड या संधियों पर वोल्टता या उनके मध्य विभवान्तर ज्ञात करना मुख्य उद्देश्य हो तो यह विधि प्रयुक्त की जाती है। इस विधि में प्रतिबाधाओं (impedances) के स्थान पर प्रवेश्यताओं (admittances ) का उपयोग सहायक होता है । सर्वप्रथम परिपथ का कोई उपयुक्त नोड (संधि) निर्देशदन्त (reference datum) मान लिया जाता है।
सुविधा के लिये सर्वनिष्ठ (common) या भूसंपर्किता (grounded) संधि को निर्देश संधि मानते हैं व उसे शून्य वोल्टता बिन्दु के रूप में प्रयुक्त करते हैं। चित्र (1.3 – 1 ) में बिन्दु 0 निर्देश संधि मानी गई है। इस परिपथ में तीन प्रभावी संधियाँ हैं a, b व 010 को निर्देश संधि लेने पर
केवल a व b पर किरचॉफ के धारा – नियमानुसार
दो समीकरण प्राप्त किये जा सकते हैं। ये समीकरण इन संधियों पर वोल्टताओं तथा अवयवों की प्रवेश्यताओं के रूप में लिखे जाते हैं। व्यापक रूप में यदि किसी परिपथ में N संधियाँ हैं तो धारा- योग के (N – 1) समीकरण प्राप्त होते हैं जिनको हल कर विभिन्न संधियों पर वोल्टताओं के मान प्राप्त किये जा सकते हैं।
(ii) पाश या लूप विश्लेषण (Mesh or Loop Analysis)— इस विधि में सर्वप्रथम परिपथ जाल के उपयुक्त पाश निर्धारित किये जाते हैं तत्पश्चात् प्रत्येक जाल में निर्दिष्ट दिशा में धारा की कल्पना की जाती है। चित्र (1.3-2) में तीन पाश हैं जिनमें धारायें मान लीजिए I I1 , I2 व I3 हैं। कोई दो पाश मिलाकर एक नवीन पाश की कल्पना की जा सकती है परन्तु ऐसे पाश को लेने में कोई लाभ नहीं होता है। पाश विश्लेषण में अवयवों की प्रतिबाधाओं तथा उनमें प्रवाहित धाराओं के रूप में समीकरण प्राप्त होते हैं।
प्रत्येक पाश के लिये बन्द पथकर वोल्टता पतन के मानों का बीजीय योग शून्य होता है।
अतः प्रथम पाश के लिये
उपरोक्त समीकरणों में धाराओं के गुणक एक प्रतिबाधा – मैट्रिक्स की रचना करते हैं ।
पाश समीकरणों के हल से जाल की विभिन्न शाखाओं में धारा के मान ज्ञात किये जा सकते हैं। यदि किसी जाल में B शाखायें (branches) हैं व N संधियों (nodes or junctions) हैं तो इन समीकरणों की संख्या (B – N + 1) होती हैं। दिये गये उदाहरण में 5 शाखायें हैं तथा 3 संधियाँ हैं अत: (5 – 3 + 1) = 3 समीकरण प्राप्त होते हैं। जटिल जालाँ में इन समीकरणों की संख्या अधिक होगी। इनका हल सारणिक (determinant) विधि से प्राप्त करना सुगम होता है। यदि प्रतिबाधा मैट्रिक्स की सारणिक का मान △z लिखें अर्थात्
जहाँ △r उस सारणिक का मान है जो Z – मैट्रिक्स के r- वें स्तंभ में E स्तम्भ मैट्रिक्स प्रतिस्थापित कर प्राप्त की जाती है।
उपरोक्त विवेचन के अनुसार जिन परिपथों के लिये ( N – 1 ) का मान (B-N + 1) से कम हो अथवा जिन समस्याओं में विभिन्न संधियों पर वोल्टताओं का मान ज्ञात करना हो तो नोड या संधि विश्लेषण विधि अधिक उपयुक्त रहती है।