विद्युत विभव , सूत्र , विमा , राशि , विभवांतर में अंतर , विद्युत विभवान्तर , Electric potential in hindi

By  

(Electric potential in hindi) विद्युत विभव , सूत्र , विमा , राशि , विभवांतर में अंतर , विद्युत विभवान्तर किसे कहते है ? :-

 विद्युत विभव : किसी परिक्षण आवेश q0 को अनन्त से विद्युत क्षेत्र के किसी बिंदु तक लाने में प्रतिकर्षण बल के विरुद्ध किया गया कार्य उस बिंदु पर विद्युत विभव को प्रदर्शित करता है , इसे V से दर्शाते है।

विभव एक अदिश राशि है।

परन्तु यह बिंदु की स्थिति का फलन होता है , इसका मात्रक जुल प्रति-कुलाम अथवा वोल्ट होता है तथा इसका विमीय समीकरण [M1L2T-3A-1] होता है।

यदि परीक्षण आवेश q0 को अनन्त से क्षेत्र के किसी बिन्दु तक लाने में किया गया कार्य W हो तब विद्युत विभव की परिभाषा से V = W/q0

एक वोल्ट : यदि W = 1 जूल

तथा  q0 = 1 कुलाम

तो सूत्र से V = 1 वोल्ट

यदि एक कुलाम आवेश को अनन्त से क्षेत्र के किसी बिंदु तक लाने में किया गया कार्य एक जुल हो तब उस बिन्दु पर विद्युत विभव एक वोल्ट के तुल्य होता है।

विद्युत विभवान्तर

किसी आवेश के विद्युत क्षेत्र में एक परिक्षण आवेश q0 को एक बिंदु से दुसरे बिन्दु तक विस्थापित करने में प्रतिकर्षण बल के विरुद्ध किया गया कार्य ही उन दोनों बिन्दुओ के मध्य विद्युत विभवान्तर को प्रदर्शित करता है।  इसका मात्रक जूल/कुलाम अथवा वोल्ट होता है।

यह भी बिन्दुओ की स्थिति का फलन होता है।

माना क्षेत्र के दो बिन्दु A तथा B के मध्य परिक्षण आवेश को विस्थापित करने में किया गया कार्य WAB है तब विद्युत विभवान्तर की परिभाषा से –

ΔV = VB – VA = WAB/q0

बिन्दुवत आवेश के कारण विद्युत विभव

चित्र में एक बिंदुवत आवेश +q को बिंदु O पर रखा गया है तथा इससे r दूरी पर स्थित बिंदु P पर विद्युत विभव की गणना करनी है अत: एक परिक्षण आवेश q0 को विद्युत क्षेत्र के बिंदु A से B तक अल्पांश विस्थापन dx से विस्थापित किया जाता है। परिक्षण आवेश q0 पर लगने वाला विद्युत बल F विस्थापन के मध्य बना कोण 180 डिग्री है तब कार्य की परिभाषा से q0 को अल्पांश विस्थापन से विस्थापित करने में किया गया अल्पांश कार्य dW निम्न प्रकार से होगा –

dW = Fdx COSʘ

dW = Fdx COS180

dW = -Fdx   समीकरण-1

कुलाम नियम से –

F = qq0/x24πE0  समीकरण-2

समीकरण-2 से समीकरण-1 में मान रखने पर –

dW = -qq0dx/4πE0x समीकरण-3

अनंत से r दूरी तक लाने में किया गया सम्पूर्ण कार्य :-

W = qq0/r.4πE0

चूँकि Vp = W/q0

Vp = q/r.4πE0  समीकरण-4

समीकरण 4 से स्पष्ट है कि विद्युत विभव का मान प्रेक्षण बिंदु की दूरी के व्युत्क्रमानुपाती होता है अर्थात दूरी बढाने पर विद्युत विभव का मान घटती है।

किसी ठोस आवेशित चालक गोले के कारण विद्युत विभव की गणना

R त्रिज्या के किसी ठोस चालक गोले को आवेशित करने पर माना q आवेश चालक के पृष्ठ पर एक समान रूप से वितरित रहता है।  गोले के कारण विद्युत विभव का मान –

(i) जब बिंदु गोले के बाहर हो (r>R) :

बिंदु P पर विद्युत विभव –

Vp = -∫E.dr  समीकरण-1

+q आवेश के कारण r दूरी पर विद्युत क्षेत्र की तीव्रता –

E = kq/r2   समीकरण-2

Vp =  kq/r समीकरण-3

(ii) जब बिंदु गोले के पृष्ठ पर हो (r = R)

समीकरण-3 में r = R रखने पर –

Vp =  kq/R समीकरण-4

(iii) जब बिंदु गोले के अन्दर स्थित हो –

Vअन्दर = Vपृष्ठ = kq/R

आवेशित गोले के अन्दर स्थित बिंदु पर विद्युत विभव का मान पृष्ठ पर स्थित बिंदु के विभव के बराबर होता है क्योंकि परिक्षण आवेश को पृष्ठ से अन्दर स्थित बिंदु तक लाने में कोई अतिरिक्त कार्य नहीं करना पड़ता है।

आवेशित गोलीय कोश के कारण विद्युत विभव की गणना :

किसी आवेशित गोलीय कोश के कारण विद्युत विभव के मान –

(i) जब बिंदु P गोलीय कोश के बाहर हो अर्थात r > R हो तो –

Vp = Kq/r

(ii) जब बिंदु P गोले के पृष्ठ पर हो अर्थात r = R हो तो –

Vp = Kq/R

(iii) जब बिंदु गोले के अन्दर स्थित हो अर्थात r < R तो –

Vअन्दर = Kq/R

समावेशित अचालक गोले के कारण विद्युत विभव

R त्रिज्या के किसी अचालक गोले को आवेशित करने पर q आवेश इसके सम्पूर्ण आयतन V में एक समान रूप से वितरित रहता है।

अचालक गोले के कारण विद्युत विभव का मान निम्न स्थितियों पर ज्ञात करना है –

(i) जब बिंदु गोले के बाहर हो (r >R )

Vp = +Kq/r  समीकरण-3

(ii) जब बिंदु गोले के पृष्ठ पर हो (r = R ) तो –

समीकरण-3 में r = R रखने पर –

Vp = Kq/R

(iii) जब बिंदु गोले के अन्दर स्थित हो अर्थात r < R तो –

Vp = kq/R [3/2 – r2/2R2]

विभिन्न आवेशो के कारण विद्युत विभव की गणना

दर्शाए गए चित्र में विभिन्न आवेश q1 , q2 , q3 , q4……..qn के कारण प्रेक्षण बिंदु P पर विद्युत विभव का मान ज्ञात करने के लिए माना विभिन्न आवेशो की बिंदु P से दूरियाँ क्रमशः r1 , r2 , r3 , r4……..rn है।

अत: q1 आवेश के कारण प्रेक्षण बिंदु P पर विद्युत विभव –

V1 = kq1/r1   समीकरण-1

अत: q1 आवेश के कारण प्रेक्षण बिंदु P पर विद्युत विभव –

V2 = kq2/r2   समीकरण-2

अत: q2 आवेश के कारण प्रेक्षण बिंदु P पर विद्युत विभव –

V3 = kq3/r3   समीकरण-3

इसी प्रकार qn आवेश के कारण प्रेक्षण बिंदु P पर विद्युत विभव –

Vn = kqn/rn   समीकरण-n

बिंदु P पर कुल  विद्युत विभव –

V = V1 + V2  + V + ……  Vn

अत: समीकरण-1 , 2 , 3 , n से –

V = kq1/r1 + kq2/r2 + V3 = kq3/r3  + …… + Vn = kqn/rn