हिंदी माध्यम नोट्स
तरंग सिद्धान्त : तरंगाग्र की परिभाषा क्या है ? wavefront in hindi , तरंगाग्र प्रकार , गोलाकार , बेलनाकार ,द्वितीयक तरंगीकाएँ
हाइगेन का तरंग सिद्धान्त : हाइगेन के तरंग सिद्धांत के अनुसार प्रकाश माध्यम में तरंग के रूप में आगे की ओर संचरित होता है।
जब प्रकाश सूर्य से पृथ्वी पर पहुँचता है तो एक काल्पनिक माध्यम ईथर से गुजरता है।
इसके अनुसार प्रकाश की प्रकृति अनुदैधर्य होती है।
हाइजेन का तरंग सिद्धान्त के अनुसार प्रकाश माध्यम में तरंगाग्र एवं द्वितीयक तरंगिकाओ के रूप में आगे की ओर संचरित होता है।
तरंगाग्र : किसी प्रकाश मान पिण्ड का प्रत्येक परमाणु सभी संभव दिशाओं में एक समान वेग से गति करता है। किसी निश्चित समय पर इन परमाणुओं के द्वारा तय की गयी दूरी के बिन्दु पथ को d तरंगाग्र कहते है।
तरंगाग्र के किसी बिंदु पर खिंची गयी स्पर्श रेखा पर डाला गया अभिलम्ब उस कण के संचरण की दिशा को निरुपित करता है। तरंगाग्र के अलग अलग बिन्दुओ के संचरण की दिशा अलग अलग होती है। यह तरंगाग्र माध्यम में प्रकाश के वेग से गमन करती है।
तरंगाग्र निम्न तीन प्रकार के होते है –
1. गोलाकार तरंगाग्र
2. बेलनाकार तरंगाग्र
3. समतल तरंगाग्र
1. गोलाकार तरंगाग्र : यह ऐसे बिन्दुओ का बिन्दुपथ होता है जिसकी बिंदु प्रकाश स्रोत से दूरी एक समान होती है। इस प्रकार के तरंगाग्र को गोलाकार तरंगाग्र कहते है।
यदि प्रकाश स्रोत बिंदु प्रकाश स्रोत या गोलीय प्रकाश स्रोत हो तो इससे उत्सर्जित तरंगाग्र गोलाकार होती है।
2. बेलनाकार तरंगाग्र : यह ऐसे बिन्दुओ का बिन्दुपथ होता है जिसकी रेखीय प्रकाश स्रोत से दूरी एक समान होती है , इस प्रकार के तरंगाग्र को बेलनाकार तरंगाग्र कहते है।
यदि प्रकाश स्रोत रेखीय प्रकाश स्रोत हो तो इससे उत्सर्जित तरंगाग्र बेलनाकार होती है।
3. समतल तरंगाग्र : जब रेखीय प्रकाश स्रोत या बिंदु प्रकाश स्रोत अत्यधिक दूरी पर स्थित होते है तो इनसे उत्सर्जित गोलाकार एवं बेलनाकार तरंगाग्र आकार में बहुत बड़े हो जाते है , इन तरंगाग्रो का एक छोटा सा भाग या अल्पांश समतल की भांति व्यवहार करता है जिसे समतल तरंगाग्र कहते है।
द्वितीयक तरंगीकाएँ
हाइगेन के तरंग सिद्धान्त के अनुसार प्रकाश माध्यम में तरंगाग्र के रूप में आगे की ओर बढ़ता है व इस तरंगाग्र का प्रत्येक बिंदु एक नए प्रकाश स्रोत की भांति व्यवहार करता है व इन छोटे छोटे बिंदु या कणों को द्वितीयक तरंगिका कहते है।
ये द्वितीयक तरंगिकाएं माध्यम में प्रकाश के वेग से गमन करती है इन द्वितीयक तरंगिकाओ के वृत्तो के अग्र भाग पर खिंची गयी स्पर्श रेखा को अग्र द्वितीयक तरंगाग्र कहा जाता है एवं पश्च भाग पर खिंची गयी स्पर्श रेखा को पश्च द्वितीयक तरंगाग्र कहा जाता है।
प्रकाश सदैव अग्र द्वितीयक तरन्गाग्र से आगे की ओर संचरित होता है।
माना चित्रानुसार s एक बिंदु प्रकाश स्रोत है इस प्रकाश स्रोत से प्रकाश गोलाकार तरंगाग्र के रूप में उत्सर्जित होता है।
एवं इस तरंगाग्र द्वारा t समय में तय की गयी दूरी vt होती है। तरंगाग्र की स्थिति ज्ञात करने के लिए बिंदु s को केंद्र मानकर vt त्रिज्या के चाप AB की रचना करते है जिसे प्राथमिक तरंगाग्र कहा जाता है , इस प्राथमिक तरंगाग्र का प्रत्येक बिन्दु एक नए प्रकाश स्रोत की भांति व्यवहार करता है जिन्हें द्वितीयक तरंगिकाएं कहा जाता है।
यह द्वितीयक तरंगिकाएँ माध्यम में प्रकाश के वेग से गमन करती है अत: t1 समय में इनके द्वारा तय की गयी दूरी vt1 होती है। अब द्वितीयक तरंगीका को केंद्र मानकर vt त्रिज्या के वृत्तो की रचना करते है। इन वृत्तो के अग्र पृष्ठ पर स्पर्श रेखा A1 , B1 खिंची जाए तो इसे अग्र द्वितीयक तरंगाग्र कहा जाता है एवं इन द्वितीयक तरंगिकाओ के वृत्तो के पश्च भाग पर स्पर्श रेखा A2B2 खींची जाए तो इस पश्च द्वितीयक तरंगाग्र कहते है। जब यह तरंगाग्र अत्यधिक दूरी तय कर लेता है तो समतल तरंगाग्र AB में परिवर्तित हो जाता है।
प्रकाश सदैव अग्र द्वितीयक तरंगाग्र से आगे की ओर संचरित होता है।
हाइगेन के तरंग सिद्धांत के आधार पर परावर्तन की व्याख्या –
माना m1m2 एक परावर्तक तल पर विचार करते है जिस पर एक समतल तरंगाग्र AB आपतित है। समतल तरंगाग्र AB का प्रत्येक बिन्दु एक नए प्रकाश स्रोत की भाँती व्यवहार करता है जिन्हें द्वितीयक तरंगिकाएँ कहते है। समतल तरंगाग्र AB पर 1 , 2 व 3 आपतित प्रकाश किरणें होती है। समतल तरंगाग्र के बिंदु B से उत्सर्जित द्वितीयक तरंगीका को बिंदु A’ तक पहुँचने में t समय लगता है।
अत: इसके द्वारा तय की गयी दूरी vt = BA’ होती है , अत: इतने समय में ही बिंदु A से परावर्तित द्वितीयक तरंगिका भी vt दूरी तय कर लेती है अत: तरंगाग्र की स्थिति ज्ञात करने के लिए बिन्दु A को केंद्र मानकर vt त्रिज्या के चाप की रचना करते है |
इस चाप पर बिंदु A’ से स्पर्श रेखा A’B’ खींचते है जिसे परावर्तित समतल तरंगाग्र कहा जाता है तथा 1′ , 2′ व 3′ को परावर्तित प्रकाश किरणें कहते है |
आपतित एवं परावर्तित प्रकाश किरणें अभिलम्ब से क्रमशः आपतन कोण i व परावर्तन कोण r बनाती है |
चित्रानुसार
त्रिभुज ABA’ तथा A’B’A से –
BA’ = AB’ = vt
कोण B = B’ = 90 डिग्री
कर्ण AA’ = कर्ण AA’
SAS सर्वान्गसमता से –
त्रिभुज ABA’ = A’B’A
अर्थात कोण A = A’
अत: कोण i = r
अत: स्पष्ट है कि आपतन कोण i का मान परावर्तन कोण r के बराबर होता है जिसे परावर्तन का प्रथम नियम कहते है |
आपतित प्रकाश किरण , परावर्तन प्रकाश किरण एवं अभिलम्ब तीनो एक ही तल में विद्यमान होते है , इसे परावर्तन का द्वितीय नियम कहा जाता है |
Recent Posts
सती रासो किसकी रचना है , sati raso ke rachnakar kaun hai in hindi , सती रासो के लेखक कौन है
सती रासो के लेखक कौन है सती रासो किसकी रचना है , sati raso ke…
मारवाड़ रा परगना री विगत किसकी रचना है , marwar ra pargana ri vigat ke lekhak kaun the
marwar ra pargana ri vigat ke lekhak kaun the मारवाड़ रा परगना री विगत किसकी…
राजस्थान के इतिहास के पुरातात्विक स्रोतों की विवेचना कीजिए sources of rajasthan history in hindi
sources of rajasthan history in hindi राजस्थान के इतिहास के पुरातात्विक स्रोतों की विवेचना कीजिए…
गुर्जरात्रा प्रदेश राजस्थान कौनसा है , किसे कहते है ? gurjaratra pradesh in rajasthan in hindi
gurjaratra pradesh in rajasthan in hindi गुर्जरात्रा प्रदेश राजस्थान कौनसा है , किसे कहते है…
Weston Standard Cell in hindi वेस्टन मानक सेल क्या है इससे सेल विभव (वि.वा.बल) का मापन
वेस्टन मानक सेल क्या है इससे सेल विभव (वि.वा.बल) का मापन Weston Standard Cell in…
polity notes pdf in hindi for upsc prelims and mains exam , SSC , RAS political science hindi medium handwritten
get all types and chapters polity notes pdf in hindi for upsc , SSC ,…