JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now

हिंदी माध्यम नोट्स

Categories: 10th science

अवतल दर्पण के उपयोग , उत्तल दर्पण के उपयोग , uses of spherical mirrors in hindi , concave mirror and convex mirror

अवतल दर्पण के उपयोग
अवतल दर्पण का उपयोग मुख्य रूप से टॉर्च, सर्च लाईट, तथा गाड़ियों के हेड लाईट आदि में किया जाता है। जिसमे की ब्लब को अवतल दर्पण के फोकस पर रखा जाता है। इस ब्लब से प्रकाश की किरणों का समानांतर बीम प्राप्त होता है जिसकी वजह से रौशनी दूर तक फैलती है। अवतल दर्पण का उपयोग दर्पण के रूप में हजामत बनाने के लिये किया जाता है। अवतल दर्पण का उपयोग चेहरे का बड़ा प्रतिबिम्ब दर्पण के पीछे बनाने के लिए किया जाता है तथा हजामत बनाने में सुविधा होती है।
दाँतों के डॉक्टर द्वारा रोगी के दाँतों का बड़ा प्रतिबिम्ब देखने के लिये अवतल दर्पण का उपयोग किया जाता है।बड़े अवतल दर्पण का उपयोग सौर भट्ठी में किया जाता है और बड़े अवतल दर्पण का द्वारक भी बड़ा होता है, जिसकी वजह से यह सूर्य के किरणों की बड़ी मात्रा को एक जगह पर केन्द्रित कर उष्मा की बड़ी मात्रा देता है।
उत्तल दर्पण द्वारा प्रतिबिम्ब का बनाना
उत्तल दर्पण का मुख्य फोकस तथा वक्रता केन्द्र दर्पण के पीछे स्थित होता है इसी वजह से बिम्ब को केवल दो ही स्थिति में रख सकते है
1.जब बिम्ब एक अनंत दूरी पर हो
2.जब बिम्ब दर्पण के ध्रुव तथा अनंत दूरी के बीच हो
1. जब बिम्ब अनंत दूरी पर स्थिति हो इस स्थिति में उत्तल दर्पण द्वारा प्रतिबिम्ब का बनना
जब बिम्ब को अनंत दूरी पर रखा जाता है तो इससे आने वाली किरणें दर्पण के फोकस से अपसरित होती हुई प्रतीत होती है और इसका प्रतिबिम्ब उत्तल दर्पण के मुख्य फोकस पर बनता है।
प्रतिबिम्ब की स्थिति : फोकस पर, दर्पण के पीछे
प्रतिबिम्ब का आकार : अत्यधिक छोटा, बिन्दु के आकार का
प्रतिबिम्ब की प्रकृति : आभासी तथा सीधा
2. जब बिम्ब को उत्तल दर्पण के ध्रुव तथा अनंत दूरी के बीच रखा जाता है उस स्थिति में प्रतिबिम्ब का बनना
जब बिम्ब को उत्तल दर्पण के ध्रुव तथा अनंत के बीच कहीं भी रखा जाये तो इसका प्रतिबिम्ब दर्पण के ध्रुव तथा फोकस के बीच में, जो कि दर्पण के पीछे होता है, बनता है।
प्रतिबिम्ब की स्थिति : फोकस तथा ध्रुव के बीच, दर्पण के पीछे
प्रतिबिम्ब का आकार : छोटा
प्रतिबिम्ब की प्रकृति : आभासी तथा सीधा
उत्तल दर्पण के उपयोग
1. उत्तल दर्पण का उपयोग वाहनों में पश्च दृश्य दर्पणों के रूप में किया जाता है। पश्च दृश्य दर्पण वाहनों के साइड  में लगे होते हैं, जिसकी मदद से वाहन चालक पीछे आने वाले वाहनों को देख सकता है। उत्तल दर्पण का दृष्टि क्षेत्र बड़ा होता है क्योकि उत्तल दर्पण बाहर की ओर वक्रित होता है तथा ये सीधा तथा छोटा प्रतिबिम्ब बनाते हैं, जिसके कारण वाहन चालक उनके पीछे दूर तक आते वाहनों को आसानी से देख पाते हैं, जिससे वाहन को चलाने में सुविधा होती है।
2. उत्तल दर्पण का उपयोग तीक्ष्ण मोड़ पर दूसरी तरफ से आने वाले वाहनों को देखने में होता है। दूसरी तरफ से आने वाले वाहनों को देख लेने के बाद विपरीत दिशा से आने वाले वाहन चालक सतर्क हो जाते हैं तथा वाहन सुरक्षित रूप से चला पाते हैं।
गोलीय दर्पणों द्वारा परावर्तन के लिए चिन्ह परिपाटी
गोलीय दर्पणों द्वारा प्रकाश के परावर्तन पर विचार करने के लिए एक निश्चत चिन्ह परिपाटी तैयार की गई है, जिसे नयी कार्तीय चिन्ह परिपाटी कहते हैं।
गोलीय दर्पणों द्वारा प्रकाश के परावर्तन पर विचार करने के लिये नयी कार्तीय चिन्ह परिपाटी के नियम
1. बिम्ब को हमेशा दर्पण के बाईं तरफ रखा जाता है अर्थात गोलीय़ दर्पण पर बिम्ब से प्रकाश की किरणे बाईं ओर से आपतित होती है।
2. दर्पण के ध्रुव से ही मुख्य अक्ष के समांतर सभी दूरियाँ मापी जाती है।
3. मूल बिन्दु अर्थात ध्रुव के दाईं ओर मापी गई सभी दूरियाँ धनात्मक (+) मानी जाती हैं जबकि मूल बिन्दु के बाईं ओर के अनुदिश मापी गई दूरियाँ ऋणात्मक (-) मानी जाती हैं।
4. मुख्य अक्ष के लंबबत तथा उपर की ओर मापी जाने वाली दूरियाँ धनात्मक (+) मानी जाती हैं।
5. मुख्य अक्ष के लंबबत तथा नीचे की ओर मापी जाने वाली दूरियाँ ऋणात्मक (-) मानी जाती हैं।
दर्पण सूत्र तथा आवर्धन
ध्रुव से बिम्ब की दूरी (u), मुख्य फोकस (f) तथा ध्रुव से प्रतिबिम्ब की दूरी (v) के बीच संबंध को इस प्रकार से दर्शाया जाता है:
1/v+1/u=1/f
जहाँ, u = बिम्ब की ध्रुव से दूरी [इसे बिम्ब दूरी कहते हैं।]
v = प्रतिबिम्ब ध्रुव से की दूरी [इसे प्रतिबिम्ब दूरी कहते हैं।]
f = मुख्य फोकस की ध्रुव से दूरी
बिम्ब दूरी (u), प्रतिबिम्ब दूरी (v) तथा फोकस दूरी (f) के बीच इस संबंध को दर्पण सूत्र कहा जाता है।
इस प्रकार का संबह सभी प्रकार के गोलीय दर्पणों के लिये बिम्ब की सभी स्थितियों के लिये मान्य है।
आवर्धन
आवर्धन से यह ज्ञात होता है की कोई प्रतिबिम्ब बिम्ब की अपेक्षा कितना गुना आवर्धित है।आवर्धन को अक्षर (m) से निरूपित किया जाता है।
आवर्धन (m) को प्रतिबिम्ब की उँचाई (h’) तथा बिम्ब की उँचाई (h) के अनुपात में व्यक्त किया जाता है।
m= h’/h ——-(i)
आवर्धन (m) तथा बिम्ब दूरी (u) तथा प्रतिबिम्ब दूरी (v) में संबंध
आवर्धन (m)= h’/h = −v/u —–(ii)
अत: उपरोक्त समीकरण (i) और समीकरण (ii) की मदद से किसी भी दो का मान ज्ञात होने पर तीसरे के मान की गणना की जा सकती है।
Sbistudy

Recent Posts

सारंगपुर का युद्ध कब हुआ था ? सारंगपुर का युद्ध किसके मध्य हुआ

कुम्भा की राजनैतिक उपलकियाँ कुंमा की प्रारंभिक विजयें  - महाराणा कुम्भा ने अपने शासनकाल के…

4 weeks ago

रसिक प्रिया किसकी रचना है ? rasik priya ke lekhak kaun hai ?

अध्याय- मेवाड़ का उत्कर्ष 'रसिक प्रिया' - यह कृति कुम्भा द्वारा रचित है तथा जगदेय…

4 weeks ago

मालकाना का युद्ध malkhana ka yudh kab hua tha in hindi

malkhana ka yudh kab hua tha in hindi मालकाना का युद्ध ? मालकाना के युद्ध…

2 months ago

कान्हड़देव तथा अलाउद्दीन खिलजी के संबंधों पर प्रकाश डालिए

राणा रतन सिंह चित्तौड़ ( 1302 ई. - 1303 ) राजस्थान के इतिहास में गुहिलवंशी…

2 months ago

हम्मीर देव चौहान का इतिहास क्या है ? hammir dev chauhan history in hindi explained

hammir dev chauhan history in hindi explained हम्मीर देव चौहान का इतिहास क्या है ?…

2 months ago

तराइन का प्रथम युद्ध कब और किसके बीच हुआ द्वितीय युद्ध Tarain battle in hindi first and second

Tarain battle in hindi first and second तराइन का प्रथम युद्ध कब और किसके बीच…

2 months ago
All Rights ReservedView Non-AMP Version
X

Headline

You can control the ways in which we improve and personalize your experience. Please choose whether you wish to allow the following:

Privacy Settings
JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now