हिंदी माध्यम नोट्स
relation and function class 12 notes pdf in hindi , सम्बन्ध और फलन , डोमेन एवं परिसर , प्रतिलोम सम्बन्ध
सम्बन्ध और फलन (relation and function class 12 notes in hindi) : जब भी हम दो वस्तुओं की तुलना करते है तो हम उनके मध्य एक सम्बन्ध स्थापित करते है। उदाहरण के लिए जब हम कहते है कि एक लड़का दुसरे लड़के का भाई है तो हम यहाँ सम्बन्ध “भाई” को परिभाषित करते है।
इसी तरह जब हम कहते है कि राम की लम्बाई श्याम की लम्बाई से अधिक है तो यह राम व श्याम के मध्य एक सम्बन्ध दर्शाता है।
इसी तरह भारत की राजधानी नई दिल्ली है , इसमें दो स्थानों के बीच सम्बन्ध दर्शाया गया है।
संख्या 99 , संख्या 66 से बड़ी है , इसमें दो संखाओ के मध्य सम्बन्ध दर्शाया गया है। अगर इसे और विस्तार से देखे तो इसमें दो संखाएँ है 99 व 66 जिसमे सम्बन्ध “दूसरी से बड़ी” है।
व्यापक रूप से यदि (a , b) एक क्रमित युग्म है और इसके अवयव a एवं b है , ये दोनों अवयव किसी सम्बन्ध R से जुड़े है तो हम इस तथ्य को aRbद्वारा लिखते है। इसे a सम्बन्ध b पढ़ा जाता है।
किसी समुच्चय में सम्बन्ध : किसी भी समुच्चय A पर कोई सम्बन्ध R , A X A का उपसमुच्चय होता है।
अब हम दो समुच्चयो में सम्बन्ध की चर्चा करते है –
माना A = {1 , 8 ,27} एवं B = {1 , 2 , 3} दो समुच्चय है तब
AxB = {(1,1) , (1 ,2) , (1,3) , (8,1) , (8,2) , (8,3) , (27,1) , (27,2) , (27,3)}
अब A से B में कोई सम्बन्ध इस प्रकार पाया जाता है (x , y) ϵ R , जहाँ x = y2 {x ϵ A , y ϵ B} अर्थात क्रमित युग्म (x , y) में
प्रथम अवयव = (द्वितीय अवयव)2
तो R = {(1,1) , (8,2) , (27,3)}
स्पष्ट है कि R ⊆ A x B
परिभाषा : समुच्चय A से समुच्चय B में कोई सम्बन्ध R , A x B का उपसमुच्चय होता है अर्थात R ⊆ A x B
सम्बन्ध का डोमेन एवं परिसर (domain and range of a relation)
डोमेन : यदि R , A समुच्चय से B समुच्चय में एक सम्बन्ध है अर्थात R ⊆ A x B तो डोमेन : R के क्रमित युग्मो के सभी प्रथम अवयवों का समुच्चय डोमेन या Dom (R) कहलाता है , अर्थात डॉम (R) = {x : x ∈ A तथा (x,y) ∈ R }
परिसर : R के क्रमित युग्मों के सभी द्वितीय अवयवों का समुच्चय परिसर या रेंज (R) कहलाता है।
अर्थात परिसर या रेंज (R) = {y : y ∈ B तथा (x , y) ∈ R}
टिप्पणी : Dom (R) में A समुच्चय के वे ही अवयव होंगे जो R सम्बन्ध द्वारा B समुच्चय के अवयवों से सम्बन्धित है। ठीक इसी प्रकार परिसर (रेंज) R में B के वे ही अवयव होंगे जो R द्वारा A के अवयवों से समन्धित है।
अत: स्पष्ट है कि Dom (R) ⊆ A एवं परिसर (R) ⊆ B
उदाहरण : यदि A = {1 , 2 , 3}तथा B = {a , b ,c} , यदि A से B में कोई सम्बन्ध R = {(1 ,a) , (2,b) , (3,c)} हो , तो
डोमेन (R) = {1,2,3} या डोमेन (R) ⊆ A एवं परिसर (R) = {a,b,c} , परिसर (रेंज) (R) ⊆ B
प्रतिलोम सम्बन्ध (Inverse Relation)
Recent Posts
मालकाना का युद्ध malkhana ka yudh kab hua tha in hindi
malkhana ka yudh kab hua tha in hindi मालकाना का युद्ध ? मालकाना के युद्ध…
कान्हड़देव तथा अलाउद्दीन खिलजी के संबंधों पर प्रकाश डालिए
राणा रतन सिंह चित्तौड़ ( 1302 ई. - 1303 ) राजस्थान के इतिहास में गुहिलवंशी…
हम्मीर देव चौहान का इतिहास क्या है ? hammir dev chauhan history in hindi explained
hammir dev chauhan history in hindi explained हम्मीर देव चौहान का इतिहास क्या है ?…
तराइन का प्रथम युद्ध कब और किसके बीच हुआ द्वितीय युद्ध Tarain battle in hindi first and second
Tarain battle in hindi first and second तराइन का प्रथम युद्ध कब और किसके बीच…
चौहानों की उत्पत्ति कैसे हुई थी ? chahamana dynasty ki utpatti kahan se hui in hindi
chahamana dynasty ki utpatti kahan se hui in hindi चौहानों की उत्पत्ति कैसे हुई थी…
भारत पर पहला तुर्क आक्रमण किसने किया कब हुआ first turk invaders who attacked india in hindi
first turk invaders who attacked india in hindi भारत पर पहला तुर्क आक्रमण किसने किया…