JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now

हिंदी माध्यम नोट्स

Categories: Physics

विद्युत विभव क्या है , सूत्र , विमा , राशि , मात्रक विभवांतर में अंतर , विद्युत विभवान्तर किसे कहते है

(Electric potential in hindi) विद्युत विभव क्या है ,मात्रक , सूत्र , विमा , राशि , विभवांतर में अंतर , विद्युत विभवान्तर किसे कहते है ? :-

 विद्युत विभव : किसी परिक्षण आवेश q0 को अनन्त से विद्युत क्षेत्र के किसी बिंदु तक लाने में प्रतिकर्षण बल के विरुद्ध किया गया कार्य उस बिंदु पर विद्युत विभव को प्रदर्शित करता है , इसे V से दर्शाते है।

विभव एक अदिश राशि है।

परन्तु यह बिंदु की स्थिति का फलन होता है , इसका मात्रक जुल प्रति-कुलाम अथवा वोल्ट होता है तथा इसका विमीय समीकरण [M1L2T-3A-1] होता है।

यदि परीक्षण आवेश q0 को अनन्त से क्षेत्र के किसी बिन्दु तक लाने में किया गया कार्य W हो तब विद्युत विभव की परिभाषा से V = W/q0

एक वोल्ट : यदि W = 1 जूल

तथा  q0 = 1 कुलाम

तो सूत्र से V = 1 वोल्ट

यदि एक कुलाम आवेश को अनन्त से क्षेत्र के किसी बिंदु तक लाने में किया गया कार्य एक जुल हो तब उस बिन्दु पर विद्युत विभव एक वोल्ट के तुल्य होता है।

विद्युत विभवान्तर

किसी आवेश के विद्युत क्षेत्र में एक परिक्षण आवेश q0 को एक बिंदु से दुसरे बिन्दु तक विस्थापित करने में प्रतिकर्षण बल के विरुद्ध किया गया कार्य ही उन दोनों बिन्दुओ के मध्य विद्युत विभवान्तर को प्रदर्शित करता है।  इसका मात्रक जूल/कुलाम अथवा वोल्ट होता है।

यह भी बिन्दुओ की स्थिति का फलन होता है।

माना क्षेत्र के दो बिन्दु A तथा B के मध्य परिक्षण आवेश को विस्थापित करने में किया गया कार्य WAB है तब विद्युत विभवान्तर की परिभाषा से –

ΔV = VB – VA = WAB/q0

बिन्दुवत आवेश के कारण विद्युत विभव

चित्र में एक बिंदुवत आवेश +q को बिंदु O पर रखा गया है तथा इससे r दूरी पर स्थित बिंदु P पर विद्युत विभव की गणना करनी है अत: एक परिक्षण आवेश q0 को विद्युत क्षेत्र के बिंदु A से B तक अल्पांश विस्थापन dx से विस्थापित किया जाता है। परिक्षण आवेश q0 पर लगने वाला विद्युत बल F विस्थापन के मध्य बना कोण 180 डिग्री है तब कार्य की परिभाषा से q0 को अल्पांश विस्थापन से विस्थापित करने में किया गया अल्पांश कार्य dW निम्न प्रकार से होगा –

dW = Fdx COSʘ

dW = Fdx COS180

dW = -Fdx   समीकरण-1

कुलाम नियम से –

F = qq0/x24πE0  समीकरण-2

समीकरण-2 से समीकरण-1 में मान रखने पर –

dW = -qq0dx/4πE0x समीकरण-3

अनंत से r दूरी तक लाने में किया गया सम्पूर्ण कार्य :-

W = qq0/r.4πE0

चूँकि Vp = W/q0

Vp = q/r.4πE0  समीकरण-4

समीकरण 4 से स्पष्ट है कि विद्युत विभव का मान प्रेक्षण बिंदु की दूरी के व्युत्क्रमानुपाती होता है अर्थात दूरी बढाने पर विद्युत विभव का मान घटती है।

किसी ठोस आवेशित चालक गोले के कारण विद्युत विभव की गणना

R त्रिज्या के किसी ठोस चालक गोले को आवेशित करने पर माना q आवेश चालक के पृष्ठ पर एक समान रूप से वितरित रहता है।  गोले के कारण विद्युत विभव का मान –

(i) जब बिंदु गोले के बाहर हो (r>R) :

बिंदु P पर विद्युत विभव –

Vp = -∫E.dr  समीकरण-1

+q आवेश के कारण r दूरी पर विद्युत क्षेत्र की तीव्रता –

E = kq/r2   समीकरण-2

Vp =  kq/r समीकरण-3

(ii) जब बिंदु गोले के पृष्ठ पर हो (r = R)

समीकरण-3 में r = R रखने पर –

Vp =  kq/R समीकरण-4

(iii) जब बिंदु गोले के अन्दर स्थित हो –

Vअन्दर = Vपृष्ठ = kq/R

आवेशित गोले के अन्दर स्थित बिंदु पर विद्युत विभव का मान पृष्ठ पर स्थित बिंदु के विभव के बराबर होता है क्योंकि परिक्षण आवेश को पृष्ठ से अन्दर स्थित बिंदु तक लाने में कोई अतिरिक्त कार्य नहीं करना पड़ता है।

आवेशित गोलीय कोश के कारण विद्युत विभव की गणना :

किसी आवेशित गोलीय कोश के कारण विद्युत विभव के मान –

(i) जब बिंदु P गोलीय कोश के बाहर हो अर्थात r > R हो तो –

Vp = Kq/r

(ii) जब बिंदु P गोले के पृष्ठ पर हो अर्थात r = R हो तो –

Vp = Kq/R

(iii) जब बिंदु गोले के अन्दर स्थित हो अर्थात r < R तो –

Vअन्दर = Kq/R

समावेशित अचालक गोले के कारण विद्युत विभव

R त्रिज्या के किसी अचालक गोले को आवेशित करने पर q आवेश इसके सम्पूर्ण आयतन V में एक समान रूप से वितरित रहता है।

अचालक गोले के कारण विद्युत विभव का मान निम्न स्थितियों पर ज्ञात करना है –

(i) जब बिंदु गोले के बाहर हो (r >R )

Vp = +Kq/r  समीकरण-3

(ii) जब बिंदु गोले के पृष्ठ पर हो (r = R ) तो –

समीकरण-3 में r = R रखने पर –

Vp = Kq/R

(iii) जब बिंदु गोले के अन्दर स्थित हो अर्थात r < R तो –

Vp = kq/R [3/2 – r2/2R2]

विभिन्न आवेशो के कारण विद्युत विभव की गणना

दर्शाए गए चित्र में विभिन्न आवेश q1 , q2 , q3 , q4……..qn के कारण प्रेक्षण बिंदु P पर विद्युत विभव का मान ज्ञात करने के लिए माना विभिन्न आवेशो की बिंदु P से दूरियाँ क्रमशः r1 , r2 , r3 , r4……..rn है।

अत: q1 आवेश के कारण प्रेक्षण बिंदु P पर विद्युत विभव –

V1 = kq1/r1   समीकरण-1

अत: q1 आवेश के कारण प्रेक्षण बिंदु P पर विद्युत विभव –

V2 = kq2/r2   समीकरण-2

अत: q2 आवेश के कारण प्रेक्षण बिंदु P पर विद्युत विभव –

V3 = kq3/r3   समीकरण-3

इसी प्रकार qn आवेश के कारण प्रेक्षण बिंदु P पर विद्युत विभव –

Vn = kqn/rn   समीकरण-n

बिंदु P पर कुल  विद्युत विभव –

V = V1 + V2  + V + ……  Vn

अत: समीकरण-1 , 2 , 3 , n से –

V = kq1/r1 + kq2/r2 + V3 = kq3/r3  + …… + Vn = kqn/rn

प्रश्न : एक 2 uC आवेश को विद्युत क्षेत्र में अन्नत से किसी बिंदु तक बिमा वेग में परिवर्तन के लाया जाता है , यदि स्थिर विद्युत बल के विरुद्ध किया गया कार्य -40 uJ है तो इस बिंदु पर विद्युत विभव का मान ज्ञात करो ?

उत्तर : V = W/q

V = -40uJ/2uC

V = -20 V

प्रश्न : एक 10 uC आवेश को वैद्युत क्षेत्र में अनंत से किसी बिंदु तक लाने में किया गया कार्य 10 uJ है | यदि इससे दुगुने आवेश को अनंत से उसी बिंदु तक बिना त्वरण के लाया जाता है तो विद्युत क्षेत्र के विरुद्ध विद्युत क्षेत्र द्वारा किया गया कार्य ज्ञात करो ?

उत्तर : Wबाह्य)∞p = 10 µJ

Vp = Wबाह्य)∞p/q

Vp = 10 µJ/10 µC = 1V

इसलिए यदि अब दुगुने आवेश को अनंत से लाया जाता है।

1 = Wबाह्य)∞p/20 µC

Wबाह्य)∞p = 20 µJ

Wबाह्य)∞p = -20 µJ

विद्युत विभव और विभवान्तर

वैद्युत विभव वह कारण है जो आवेश के प्रवाह की दिशा को निर्धारित करता है अर्थात विद्युत विभव किसी आवेशित वस्तु के विद्युत तल को व्यक्त करता है।

जिस प्रकार द्रव का प्रवाह हमेशा उच्च गुरुत्वीय तल से निम्न तल की ओर होता है , ऊष्मा का प्रवाह उच्च ताप की वस्तु से निम्न ताप की वस्तु की ओर होता है ठीक उसी तरह से आवेश (धनात्मक) का प्रवाह भी उच्च विभव से निम्न विभव की ओर होता है।

विद्युत विभव एक अदिश राशि होती है।

इसको V द्वारा व्यक्त किया जाता है।

चित्र में दिखाया गया है कि आवेशो के एक विन्यास के कारण उत्पन्न विद्युत क्षेत्र में किसी परिक्षण आवेश +q0 को बिंदु A से B तक ले जाने में कृत कार्य केवल प्रारंभिक और अंतिम बिन्दुओं की स्थिति पर निर्भर करता है , इस बात पर नहीं कि परिक्षण आवेश को किस मार्ग से ले जाया गया है अर्थात किया गया कार्य (कृत कार्य) मार्ग पर निर्भर नहीं करता है।

यदि बिन्दुओं A व B पर विद्युत विभव क्रमशः VA व VB हो तो उनके मध्य विभवान्तर की परिभाषा निम्न प्रकार से की जायेगी –

VB – VA = WAB/q0

यहाँ  WAB = +q0 आवेश को A से B तक ले जाने में किया गया कार्य निम्न प्रकार है –

WAB = UB – UA = ΔU

अत: VB – VA =  (UB – UA)/q= WAB/q0

यदि q0 = +1 कुलाम

तो VB – VA = WAB

अर्थात किन्ही दो बिन्दुओं के बीच विभवान्तर उस कार्य के तुल्य है जों एकांक धनावेश को निम्न विभव के बिंदु से उच्च विभव के बिंदु तक ले जाने में करना पड़ता है .

विभवान्तर (VB – VA) का मात्रक = WAB का मात्रक/qका मात्रक

= J/C = JC-1 = वोल्ट

माना 1 वोल्ट = 1 JC-1

यदि q0 = +1 कुलाम , WAB = 1 जुल

तो VB – V= वोल्ट

अर्थात एकांक धन आवेश को यदि एक बिंदु से दूसरी बिंदु तक ले जाने में किया गया कार्य (कृत कार्य) 1 जूल हो तो उन बिन्दुओं के मध्य विभवान्तर 1 वोल्ट होगा।

यदि बिंदु A को बिंदु B से दूर करते जाए तो VA का मान घटता जायेगा और अनंत पर शून्य हो जायेगा अत: यदि बिंदु A अनंत पर है तो V= 0

अत: VB – 0  = W∞B/q0

V= W∞B/q0

या किसी भी बिंदु के लिए व्यापक रूप से , V = W/q0

यदि q0 = +1 कुलाम तो V = W

अर्थात किसी बिन्दु पर विद्युत विभव उस कार्य के बराबर है जो एक कुलाम आवेश को अनंत से उस बिंदु तक लाने में करना पड़ता है।

मात्रक और विमीय सूत्र :- किसी बिंदु पर विद्युत विभव V = W/q0

अत: V का मात्रक = W का मात्रक/ qका मात्रक

= J/C = JC-1 = वोल्ट

यदि q0 = +1 कुलाम , W = 1 जूल तो V = 1 वोल्ट

अर्थात यदि +1 C आवेश को अनंत से किसी बिंदु तक लाने में 1J कार्य करना पड़ता है तो उस बिन्दु पर विधुत विभव एक वोल्ट होगा।

V =  W/q0

V का विमीय सूत्र = W का विमीय सूत्र /qका विमीय सूत्र

V का विमीय सूत्र = M1L2T-2/A1T1

V का विमीय सूत्र = [M1L2T-3A-1]

Sbistudy

Recent Posts

सती रासो किसकी रचना है , sati raso ke rachnakar kaun hai in hindi , सती रासो के लेखक कौन है

सती रासो के लेखक कौन है सती रासो किसकी रचना है , sati raso ke…

17 hours ago

मारवाड़ रा परगना री विगत किसकी रचना है , marwar ra pargana ri vigat ke lekhak kaun the

marwar ra pargana ri vigat ke lekhak kaun the मारवाड़ रा परगना री विगत किसकी…

17 hours ago

राजस्थान के इतिहास के पुरातात्विक स्रोतों की विवेचना कीजिए sources of rajasthan history in hindi

sources of rajasthan history in hindi राजस्थान के इतिहास के पुरातात्विक स्रोतों की विवेचना कीजिए…

2 days ago

गुर्जरात्रा प्रदेश राजस्थान कौनसा है , किसे कहते है ? gurjaratra pradesh in rajasthan in hindi

gurjaratra pradesh in rajasthan in hindi गुर्जरात्रा प्रदेश राजस्थान कौनसा है , किसे कहते है…

2 days ago

Weston Standard Cell in hindi वेस्टन मानक सेल क्या है इससे सेल विभव (वि.वा.बल) का मापन

वेस्टन मानक सेल क्या है इससे सेल विभव (वि.वा.बल) का मापन Weston Standard Cell in…

3 months ago

polity notes pdf in hindi for upsc prelims and mains exam , SSC , RAS political science hindi medium handwritten

get all types and chapters polity notes pdf in hindi for upsc , SSC ,…

3 months ago
All Rights ReservedView Non-AMP Version
X

Headline

You can control the ways in which we improve and personalize your experience. Please choose whether you wish to allow the following:

Privacy Settings
JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now