JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now

हिंदी माध्यम नोट्स

Categories: Physics

विद्युत द्विध्रुव के कारण उसकी अक्षीय रेखा पर स्थित बिन्दु पर विद्युत क्षेत्र की तीव्रता electric field at point on the axial line

(electric field at point on the axial line of an electric dipole in hindi)  विद्युत द्विध्रुव के कारण उसकी अक्षीय रेखा पर स्थित बिन्दु पर विद्युत क्षेत्र की तीव्रता :

हमने पढ़ा था की विद्युत द्विध्रुव के कारण विद्युत क्षेत्र अध्यारोपण सिद्धान्त की सहायता से ज्ञात करते है।  अर्थात दोनों आवेशों के कारण उत्पन्न विद्युत क्षेत्र ज्ञात करके दोनों का सदिश योग करने पर दिए गए बिंदु पर परिणामी विद्युत क्षेत्र की तीव्रता प्राप्त होती है।
माना एक विद्युत द्विध्रुव दिया गया है दोनों आवेशों के मध्य की दूरी 2a है , विद्युत द्विध्रुव का केंद्र बिंदु O है।
केंद्र बिन्दु O से r दुरी पर एक बिंदु P स्थित है (अक्ष पर ) जहाँ हमें विद्युत क्षेत्र की तीव्रता ज्ञात करनी है।
+q आवेश के कारण P बिंदु पर उत्पन्न विद्युत क्षेत्र की तीव्रता
-q आवेश के कारण P बिंदु पर उत्पन्न विद्युत क्षेत्र की तीव्रता
अध्यारोपण सिद्धान्त (superposition theorem) से P बिंदु पर परिणामी विद्युत क्षेत्र की तीव्रता
E = E1 + E2
E1 व  E2 की दिशाएँ विपरीत है तथा E1 > E2
अतः
E = E1 –  E2
यदि r >> l तो r2 >>> l2
अतः r2 को  l2 की तुलना में नगण्य मानकर छोड़ने पर
अक्षीय रेखा में विद्युत क्षेत्र की दिशा (Direction of electric field in Axial line) :
p (विद्युत आघूर्ण) की दिशा ऋण आवेश से धन आवेश की ओर होती है अतः p (विद्युत आघूर्ण) व E (विद्युत क्षेत्र ) की एक ही दिशा दिशा होगी।
(1) अक्षीय स्थिति में वैद्युत द्विध्रुव के कारण उत्पन्न विद्युत क्षेत्र की तीव्रता : विद्युत द्विध्रुव की अक्षीय स्थिति r दूरी पर स्थित बिंदु P पर विद्युत क्षेत्र की तीव्रता ज्ञात करनी है।
+q आवेश के कारण P पर उत्पन्न विद्युत क्षेत्र की तीव्रता का परिमाण –
E1 = q/4πε0(r-l)2 समीकरण-1
-q आवेश के कारण P पर उत्पन्न विद्युत क्षेत्र की तीव्रता का परिमाण –
E2 = q/4πε0(r+l)2 समीकरण-2
अत: P पर उत्पन्न कुल परिणामी विद्युत क्षेत्र –
E = E1 + E2
चूँकि E1 व E2 की दिशाएँ परस्पर विपरीत है अत: E1 > E2
अत: P पर परिणामी विद्युत क्षेत्र की तीव्रता का परिमाण –
E = E1 – E2
समीकरण-1 व समीकरण-2 से मान रखने पर –
E = q/4πε0(r-l)2E2 = q/4πε0(r+l)2
E = q4rl/ 4πε0(r2-l2)2
E = q.2l.2r/ 4πε0(r2-l2)2
चूँकि विद्युत द्विध्रुव आघूर्ण p = q.2l
अत: E = p.2r/ 4πε0(r2-l2)2
द्विध्रुव आघूर्ण p की दिशा ऋण आवेश से धन आवेश की ओर होती है अत: p व E एक ही दिशा में होंगे।
दीर्घ दूरियों के लिए r >> l
अत: r2 >> l2
अत: l2 को r2 की तुलना में नगण्य मानकर छोड़ने पर –
E = p.2r/ 4πε0r4
E = 2p/ 4πε0r3
यह ध्यान देने योग्य बात है कि विद्युत द्विध्रुव आघूर्ण p एवं विद्युत क्षेत्र की E की दिशा एक ही होगी।
Sbistudy

Recent Posts

सारंगपुर का युद्ध कब हुआ था ? सारंगपुर का युद्ध किसके मध्य हुआ

कुम्भा की राजनैतिक उपलकियाँ कुंमा की प्रारंभिक विजयें  - महाराणा कुम्भा ने अपने शासनकाल के…

4 weeks ago

रसिक प्रिया किसकी रचना है ? rasik priya ke lekhak kaun hai ?

अध्याय- मेवाड़ का उत्कर्ष 'रसिक प्रिया' - यह कृति कुम्भा द्वारा रचित है तथा जगदेय…

4 weeks ago

मालकाना का युद्ध malkhana ka yudh kab hua tha in hindi

malkhana ka yudh kab hua tha in hindi मालकाना का युद्ध ? मालकाना के युद्ध…

2 months ago

कान्हड़देव तथा अलाउद्दीन खिलजी के संबंधों पर प्रकाश डालिए

राणा रतन सिंह चित्तौड़ ( 1302 ई. - 1303 ) राजस्थान के इतिहास में गुहिलवंशी…

2 months ago

हम्मीर देव चौहान का इतिहास क्या है ? hammir dev chauhan history in hindi explained

hammir dev chauhan history in hindi explained हम्मीर देव चौहान का इतिहास क्या है ?…

3 months ago

तराइन का प्रथम युद्ध कब और किसके बीच हुआ द्वितीय युद्ध Tarain battle in hindi first and second

Tarain battle in hindi first and second तराइन का प्रथम युद्ध कब और किसके बीच…

3 months ago
All Rights ReservedView Non-AMP Version
X

Headline

You can control the ways in which we improve and personalize your experience. Please choose whether you wish to allow the following:

Privacy Settings
JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now