JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now

हिंदी माध्यम नोट्स

Categories: physics

डॉप्लर प्रभाव की परिभाषा क्या है , उदाहरण , सूत्र , संरचना चित्र (doppler’s effect in hindi) डॉप्लर प्रभाव किसे कहते हैं

(doppler’s effect in hindi) डॉप्लर प्रभाव की परिभाषा क्या है , उदाहरण , सूत्र , संरचना चित्र , ध्वनि का डॉप्लर प्रभाव किसे कहते हैं , किससे सम्बन्धित है ?
परिभाषा : जब स्रोत और श्रोता दोनों के मध्य आपेक्षिक गति होती है तो तरंग की आवृत्ति बदल जाती है।
आपने देखा होगा जब आप रेलवे स्टेशन पर खड़े होते है और ट्रेन हॉर्न देती हुई आपकी तरफ आती है तो हॉर्न की आवृत्ति का मान धीरे धीरे बढ़ता है अर्थात जैसे जैसे ट्रेन पास आती है ध्वनि तरंग की आवृत्ति (आवाज) बढती जाती है और जब आपसे दूर जाती है तो आवाज धीरे धीरे कम होती जाती है अर्थात आवृत्ति का मान कम हो जाता है , ध्वनि तरंगों की आवृत्ति में होने आपेक्षिक गति के कारण होने वाले परिवर्तन को ही डॉप्लर प्रभाव कहते है।
डॉप्लर प्रभाव की खोज ” क्रिश्चियन जोहान डोप्लर ” ने की थी , इन्होने सबसे पहले इस प्रभाव को तारों की लाइट का बढ़ना और कम होना समझाया था क्योंकि तारे आपेक्षिक गति करते रहते है जिसके कारण उनके प्रकाश का बढ़ना और कम होना होता रहता है।
डॉप्लर प्रभाव प्रकाश , जल तरंगे ,  और ध्वनि तरंग , आदि में घटित होता है लेकिन हम ध्वनी तरंगो के लिए डॉप्लर प्रभाव प्रभाव को आसानी से महसूस कर सकते है।
इस प्रभाव का प्रयोग खगोलिकी में भी किया जाता है , जब खगोलक को अन्तरिक्ष या तारों के बारे में जानकारी प्राप्त करनी होती है तो खगोलक तारे द्वारा विद्युत चुम्बकीय तरंगों में हुए शिफ्ट के कारण आवृत्ति में परिवर्तन को ज्ञात करता है जो की तारे में आपेक्षिक गति के कारण हो रहा है जिससे उस तारे के बारे में कई जानकारी प्राप्त हो जाती है जैसे उसकी गति इत्यादि।
उदाहरण : जब एक हॉर्न देती हुई कार आपके पास आती है तो धीरे धीरे हॉर्न की आवाज बढती है , जब यह आपके सबसे पास होती है तब आवाज सबसे अधिक होती है और जब यह आपको क्रॉस करके निकल जाती है तो आवाज कम होती जाती है।
ऐसा इसलिए होता है क्योंकि स्रोत और श्रोता में आपेक्षिक गति होने के कारण ध्वनि तरंग के पिच में परिवर्तन होता है , जैसे जैसे कार पास आती है ध्वनी तरंगों का पिच बढ़ता है और जब कार आपसे दूर जाती है तो ध्वनि तरंगो का पिच बढ़ता जाता है जैसा चित्र में दर्शाया गया है।

निम्न सूत्र बताता है की श्रोता द्वारा प्राप्त तरंग और स्रोत द्वारा वास्तविक तरंगों की आवृत्ति में क्या सम्बन्ध है –

यहाँ v = तरंगो की चाल
VL = श्रोता की चाल
Vs = स्रोत की चाल
fL = वह आवृत्ति है जो श्रोता महसूस करता है।
fs = स्रोत की वास्तविक आवृत्ति।
. यहां कब किस राशी को ऋणात्मक या धनात्मक लेनी है इसके लिए निम्न सारणी देखे
1. जब स्रोत , श्रोता की तरफ गतिशील हो तो Vs ऋणात्मक होगा।
2. जब स्रोत , श्रोता से दूर गति करता है तो Vs धनात्मक होगा।
3. जब श्रोता , स्रोत की तरफ गतिशील हो तो VLधनात्मक होगा।
4. जब श्रोता , स्रोत से दूर करता है तो Vऋणात्मक होगा।

डॉप्लर प्रभाव

डॉप्लर प्रभाव- इस प्रभाव को आस्ट्रिया के भौतिकीवेत्ता क्रिस्चियन जॉन डॉप्लर ने सन् 1842 ई. में प्रस्तुत किया था। इसके अनुसार श्रोता या स्त्रोत की गति के कारण किसी तरंग (ध्वनि तरंग या प्रकाश तरंग) की आवृत्ति बदली हुई प्रतीत होती है, अर्थात जब तरंग के स्त्रोत और श्रोता के बीच आपेक्षिक गति होती है, तो श्रोता को तरंग की आवृत्ति बदलती हुई प्रतीत होती है। आवृत्ति बदली हुई प्रतीत होने की घटना को डॉप्लर प्रभाव कहते है। इसकी निम्न स्थितियाँ होती हैं-

1. जब आपेक्षिक गति के कारण स्त्रोत और श्रोता के बीच की दूरी घट रही होती है, तब आवृत्ति बढ़ती हुई प्रतीत होती है।

2. जब आपेक्षिक गति से श्रोता तथा स्त्रोत के बीच दूरी बढ़ रही होती है, तब आवृत्ति घटती हुई प्रतीत है। ध्वनि तरंगों के लिए

डॉप्लर प्रभाव के कारण ही जब रेलगाड़ी का इंजन सीटी बजाते हुए श्रोता के निकट आता है, तो उसकी ध्वनि बड़ी तीखी, अर्थात अधिक आवृत्ति की सुनाई पड़ती है और जैसे ही इंजन श्रोता को पार करके दूर जाने लगता है, तो ध्वनि मोटी, अर्थात कम आवृत्ति की सुनाई पड़ती है।

ध्वनि के गुण

1. ध्वनि का परावर्तन – प्रकाश की भाँति ध्वनि भी एक माध्यम से चलकर दूसरे माध्यम के पृष्ठ पर टकराने पर पहले माध्यम में वापस लौट आती है। इस प्रक्रिया को ध्वनि का परावर्तन कहते हैं। ध्वनि का परावर्तन भी प्रकाश के परावर्तन की तरह होता है। किन्तु ध्वनि का तरंगदैर्घ्य अधिक होने के कारण इसका परावर्तन बड़े आकार के पृष्ठों से अधिक होता है, जैसे दीवारों, पहाड़ों, पृथ्वी तल आदि से।

ं. प्रतिध्वनि– जो ध्वनि किसी दृढ़ दीवार, पहाड़, गहरे कुएँ आदि से टकराने (अर्थात परावर्तित होने) के बाद सुनाई देती है, उसे प्रतिध्वनि कहते हैं। यदि श्रोता परावर्तन सतह के बहुत निकट खड़ा है, तो उसे प्रतिध्वनि नहीं सुनाई पड़ती है। स्पष्ट प्रतिध्वनि सुनने के लिए ध्वनि के स्त्रोत तथा परावर्तक सतह के बीच की न्यूनतम दूरी 17 मीटर होनी चाहिए। इसका कारण यह है कि जब हमारा कान कोई ध्वनि सुनता है, तो उसका प्रभाव हमारे मस्तिष्क पर 0.1 सेकण्ड तक रहता है अतः यदि इस अवधि में कोई अन्य ध्वनि भी जाएगी, तो वह पहली के साथ मिल जाएगी। अतः स्पष्ट प्रतिध्वनि सुनने के लिए आवश्यक है कि परावर्तक सतह श्रोता से कम-से-कम इतनी दूरी पर हो कि परावर्तित ध्वनि को उस तक पहुँचने में 0.1 सेकण्ड से अधिक समय लगे। ध्वनि द्वारा वायु में 0.1 सेकण्ड में चली गई दूरी = 0.1 ग 33.2 मीटर। अतः यदि हम कोई ध्वनि उत्पन्न करते है, तो उसकी स्पष्ट प्रतिध्वनि सुनने के लिए परावर्तक तल की दूरी कम-से-कम 33.2/2 = 16.6 मी. (लगभग 17 मीटर) होनी चाहिए।

इण् अनुरणन- ध्वनि का हॉल की दीवारों, छतों व फर्शो से बहुल परावर्तन होता है। बहुल परावर्तन के कारण ही ध्वनि स्त्रोत को एकदम बन्द कर देने पर भी हॉल में ध्वनि एकदम से बन्द नही होती, बल्कि कुछ समय तक सुनाई देती रहती है। अतः किसी हॉल में ध्वनि-स्त्रोत को बन्द करने बाद भी ध्वनि का कुछ देर तक सुनाई देना अनुरणन कहलाता है। तथा वह समय जिसके दौरान यह ध्वनि सुनाई देती है, अनुरणन काल कहलाता है। अनुरणन काल का मान हॉल के आयतन तथा इसके कुछ अवशोषक क्षेत्रफल पर निर्भर करता है (ज् = 0.053टध्। , जहाँ ज् = अनुरणन काल, ट = कॉल का आयतन, । = अवशोषक क्षेत्रफल)। गणना द्वारा यह पाया गया कि यदि किसी हॉल में अनुरणन काल 0.8 सेकण्ड से अधिक है, तो वक्ता द्वारा दिए आने वाले भाषण के शब्द व्यक्तियों को स्पष्ट रूप से सुनाई नहीं देते। दीवरों पर अवशोषक पदार्थ का क्षेत्रफल बढ़ाकर या घटाकर अनुरणन काल को समंजित किया जा सकता है। व्याख्यान हॉल या सिनेमा हॉल में अनावश्यक अनुरणन को रोकने के लिए हॉल की दीवारें खुरदरी बनाई जाती है, अथवा उन्हें मोटे संरन्ध्र  परदों से ढंक दिया जाता है। इससे ध्वनि अवशोषित हो जाती है और मूल ध्वनि साफ सुनाई पड़ती है। फर्श पर भी इसी उद्देश्य से कालीन बिछाई जाती है। बादलों का गर्जन भी अनुरणन का एक उदाहरण है।

2.  ध्वनि का अपवर्तन– ध्वनि तरंगें एक माध्यम से दूसरे माध्यम में जाती है, तो उनका अपवर्तन हो जाता है, अर्थात वे अपने पथ से विचलित हो जाती है। ध्वनि के अपवर्तन का कारण है- विभिन्न माध्यमों तथा विभिन्न तापों पर ध्वनि की चाल का भिन्न-भिन्न होना। ध्वनि के अपवर्तन के कुछ परिणाम है- दिन में ध्वनि का केवल ध्वनि स्त्रोत के पास के क्षेत्रों में ही सुनाई देना और रात्रि में दूर-दूर तक सुनाई देना।

3. प्रणोदित कम्पन– कम्पन करने वाली वस्तु पर यदि कोई बाह्य आवर्त बल लगाया जाये जिसकी आवृत्ति वस्तु की स्वाभाविक आवृत्ति से कम्पन करने की चेष्टा करती है, किन्तु शीघ्र ही वस्तु आरोपित बल की आवृत्ति से स्थिर आयाम के कम्पन करने के लिए बाध्य हो जाती हैं, तो बाह्य आवर्त बल के प्रभाव में वस्तु द्वारा उत्पन्न इस कम्पन को प्रणोदित कम्पन कहा जाता है।

 अनुनाद– अनुनाद प्रणोदित कम्पन की ही एक स्थिति है। अनुनाद में प्रणोदित कम्पनों की आवृत्ति वस्तु की स्वाभाविक आवृत्ति के बराबर होती है। अर्थात यदि बाह्य आवर्त बल की आवृत्ति वस्तु की स्वाभाविक आवृत्ति के बराबर हो, तब कम्पन अनुनाद कहलाता है। सन् 1939 ई. में संयुक्त राज्य अमेरिका का टैकोमा पुल यांत्रिक अनुनाद के कारण ही क्षतिग्रस्त हो गया था। उच्च गति की पवन पुल के ऊपर कम्पन करने लगी जो पुल की स्वाभाविक आवृत्ति के लगभग बराबर आवृत्ति की थी। इससे पुल को कम्पन अनुनाद की स्थिति में पहुँच गया, फलस्वरूप पुल के कम्पन के आयाम में लगातार वृद्धि होने के कारण पुल टूट गया। सैनिकों को पुल पार करने का प्रशिक्षण अनुनाद से बचने के लिए ही दिया जाता है। किसी पल को कम्पन कर सकने वाला निकाय माना जा सकता है, जिसके लिए स्वाभाविक आवृत्ति का एक निश्चित मान होगा। यदि सैनिकों के नियमित पड़ने वाले कदमों की आवृत्ति पुल की आवृत्ति के बराबर हो जाए, तो अनुनाद की स्थिति आ जाएगी और पुल में अधिक आयाम के कम्पन उत्पन्न हो जाएंगे। इससे पुल टूटने का खतरा उत्पन्न हो जाएगा। इसी कारण पुल पार करते समय सैनिकों की टुकड़ी कदम मिलाकर नहीं चलती।

हमारा रेडियों भी अनुनाद के सिद्धान्त पर ही कार्य करता है। किसी रेडियों सेट को समस्वरित करने के लिए रेडियों की धारिता के मान को तब तक बदला जाता है, जब तक कि विद्युत की वह आवृत्ति न प्राप्त हो जाए जितनी आवृत्ति आ रहे ध्वनि संकेत की है। एण्टीना में छोटे विभवांतर या वि. वा. बल उत्पन्न किए गए होते हैं, जो समस्वरित परिपथ के आयाम के बराबर का आयाम बना सके।

4. ध्वनि का व्यतिकरण– जब समान आवृत्ति या आयाम की दो ध्वनि-तरंगें एक साथ किसी बिन्दु पर पहुँचती है, तो उस बिन्दु पर ध्वनि ऊर्जा का पुनः वितरण हो जाता है। इस घटना को ध्वनि का व्यतिकरण कहते हैं।

यदि दोनों तरंगें उस बिन्दु पर एक ही कला में पहुँचती है, तो वहाँ ध्वनि की तीव्रता अधिकतम होती है। इसे सम्पोषी व्यतिकरण कहते है। यदि दोनों तरंगें विपरीत कला में पहुँचती है, तो वहाँ पर तीव्रता न्यूनतम होती है। इसे विनाशी व्यतिकरण कहते है।

5.  ध्वनि का विवर्तन- ध्वनि का तरंगदैर्घ्य 1 मी. की कोटि का होता है। अतः जब इसी कोटि का कोई अवरोध ध्वनि के मार्ग में आता है, तो ध्वनि अवरोध के किनारे से मुड़कर आगे बढ़ जाती है। इस घटना को ध्वनि का विवर्तन कहते है। यही कारण है कि बाहर से अपने वाली ध्वनि दरवाजों, खिड़की आदि पर मुड़कर हमारे कानों तक पहुँच जाती है।

Sbistudy

Recent Posts

मालकाना का युद्ध malkhana ka yudh kab hua tha in hindi

malkhana ka yudh kab hua tha in hindi मालकाना का युद्ध ? मालकाना के युद्ध…

4 weeks ago

कान्हड़देव तथा अलाउद्दीन खिलजी के संबंधों पर प्रकाश डालिए

राणा रतन सिंह चित्तौड़ ( 1302 ई. - 1303 ) राजस्थान के इतिहास में गुहिलवंशी…

4 weeks ago

हम्मीर देव चौहान का इतिहास क्या है ? hammir dev chauhan history in hindi explained

hammir dev chauhan history in hindi explained हम्मीर देव चौहान का इतिहास क्या है ?…

4 weeks ago

तराइन का प्रथम युद्ध कब और किसके बीच हुआ द्वितीय युद्ध Tarain battle in hindi first and second

Tarain battle in hindi first and second तराइन का प्रथम युद्ध कब और किसके बीच…

4 weeks ago

चौहानों की उत्पत्ति कैसे हुई थी ? chahamana dynasty ki utpatti kahan se hui in hindi

chahamana dynasty ki utpatti kahan se hui in hindi चौहानों की उत्पत्ति कैसे हुई थी…

1 month ago

भारत पर पहला तुर्क आक्रमण किसने किया कब हुआ first turk invaders who attacked india in hindi

first turk invaders who attacked india in hindi भारत पर पहला तुर्क आक्रमण किसने किया…

1 month ago
All Rights ReservedView Non-AMP Version
X

Headline

You can control the ways in which we improve and personalize your experience. Please choose whether you wish to allow the following:

Privacy Settings
JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now