contravariant tensor in hindi definition प्रतिचर प्रदिश क्या होता है प्रथम कोटि का प्रदिश (Contravariant tensor of rank one) 

प्रथम कोटि का प्रदिश (Contravariant tensor of rank one) contravariant tensor in hindi definition प्रतिचर प्रदिश क्या होता है ?

प्रतिचर प्रदिश (CONTRAVARIANT TENSOR )

(i) प्रथम कोटि का प्रदिश (Contravariant tensor of rank one)

सामान्यतः प्रतिचर प्रदिशों को प्रदिश संकेत पर मूर्धांक (subscript) लगाकर व्यक्त किया जाता है। माना किसी राशि के S निर्देश तंत्र में घटक A1, A2, A3………… An निर्देशांक xi (x1,x2,xn……………..) के फलन हैं तथा इसी राशि के S’ निर्देश तंत्र में घटक A1, A2, Ai …………….An निर्देशांक xi (x1, x2,…………xn) के फलन हैं। यदि ये निम्न रूपान्तरण समीकरण द्वारा सम्बन्धित हो तो

वे प्रथम कोटि के प्रतिचर प्रदिश कहलाते हैं। समीकरण (1) से स्पष्ट है कि n- विमीय आकाश में इस राशि के n घटक होते हैं। अतः त्रिविमीय आकाश में इस राशि के 3 घटक होंगे अर्थात् यह सदिश राशि के घटकों के अनुरूप होते हैं। अतः प्रथम कोटि के प्रदिश को सदिश भी कह सकते हैं।

(ii) द्वितीय कोटि का प्रतिचर प्रदिश (Contravariant tensor of rank two)

माना किसी राशि के S निर्देश तंत्र में n 2 घटक Ars (r, s, = 1, 2, 3……n) निर्देशांक xi(x1,x2……x.n ) के फलन हैं तथा इसी राशि के S’ निर्देश तंत्र में घटक Ai (i,j=1,2,…..n) ‘निर्देशांक Xi (x1,x2 …….. ..xn) के फलन हैं। यदि ये निम्न रूपान्तरण समीकरण द्वारा सम्बन्धित हो तो

वे द्वितीय कोटि के प्रतिचर प्रदिश या प्रतिचर सारणिक कहलाते हैं। समीकरण (3) से स्पष्ट है कि n विमीय आकाश में इस राशि के n 2 घटक होते हैं। अतः त्रिविमीय आकाश में इस राशि के 9 घटक होंगे अर्थात् यह सारणिक के घटकों के अनुरूप होते हैं। अतः द्वितीय कोटि के प्रदिश को सारणिक भी कह सकते हैं।

(iii) उच्चतर कोटि के प्रतिचर प्रदिश (Contravariant tensor of higher rank) इसी प्रकार उच्चतर कोटि के प्रतिचर प्रदिशों को परिभाषित कर सकते हैं। उदाहरणार्थ, कोटि के प्रतिचर प्रदिश के लिए

अतः इस स्थिति में त्रिविमीय आकाश में राशि के 33 = 27 घटक होते हैं। इसी प्रकार n – विमीय आकाश में p-कोटि के प्रदिश में nP घटक होते हैं।

2.5 सहचर प्रदिश (COVARIANT TENSOR )

(i) प्रथम कोटि का सहचर प्रदिश (Covariant tensor of rank one)

सामान्यतः सहचर प्रदिशों को प्रदिश संकेत पर पादांक (subscript) लगाकर व्यक्त किया जाता है। माना किसी राशि के S निर्देश तंत्र में घटक Av (v = 1, 2, 3, ……………n) के फलन हैं तथा इसी राशि के S’ निर्देश तंत्र में घटक Auनिर्देशांक xu के फलन हैं। यदि ये निम्न रूपान्तरण समीकरण द्वारा सम्बन्धित हो तो

प्रथम कोटि के सहचर प्रदिश कहलाते हैं। समीकरण (1) से स्पष्ट है कि n – विमीय आकाश इस राशि के n घटक होते हैं। अतः त्रिविमीय आकाश में इस राशि के 3 घटक होंगे अर्थात् यह भी सदिश राशि के घटकों के अनुरूप होते हैं।

प्रथम कोटि के सहचर प्रदिश का रूपान्तरण

(ii) द्वितीय कोटि का सहचर प्रदिश (Covariant tensor of rank two)

माना किसी राशि के S निर्देश तंत्र में n 2 घटक Ap (p, o = 1, 2, 3, n) निर्देशांक xu = u = 1, 2, 3,…..n.) के फलन हैं तथा इसी राशि के S’ निर्देश तंत्र में घटक Auv (uv= 1, 2, 3, …..n) निर्देशांक xu के फलन हैं। यदि ये निम्न रूपान्तरण समीकरण द्वारा सम्बन्धित हो तो

वे द्वितीय कोटि के सहचर प्रदिश कहलाते हैं। समीकरण (3) से स्पष्ट है कि n-विमीय आकाश में इस राशि के n 2 घटक होते हैं। अतः त्रिविमीय आकाश में इस राशि के 9 घटक होंगे अर्थात् यह सारणिक के घटकों के अनुरूप होते हैं। अतः द्वितीय कोटि के प्रदिश को सारणिक भी कह सकते हैं।

(iii) उच्चतर कोटि के प्रतिचर प्रदिश (Contravariant tensor of higher rank) इसी प्रकार उच्चतर कोटि के प्रतिचर प्रदिशों को परिभाषित कर सकते हैं। उदाहरणार्थ, कोटि के प्रतिचर प्रदिश के लिए तीन

अतः इस स्थिति में त्रिविमीय आकाश में राशि के 33 = 27 घटक होते हैं। इसी प्रकार n – विमीय आकाश में p-कोटि के प्रदिश में nP घटक होते हैं।

2.5 सहचर प्रदिश (COVARIANT TENSOR )

(i) प्रथम कोटि का सहचर प्रदिश (Covariant tensor of rank one)

सामान्यतः सहचर प्रदिशों को प्रदिश संकेत पर पादांक (subscript) लगाकर व्यक्त किया जाता है। माना किसी राशि के S निर्देश तंत्र में घटक Av (v = 1, 2, 3,……………..n) निर्देशांक xu (u = 1,2,3…………….n) के फलन हैं तथा इसी राशि के S’ निर्देश तंत्र में घटक Au निर्देशांक xu के फलन हैं। यदि ये निम्न रूपान्तरण समीकरण द्वारा सम्बन्धित हो तो

प्रथम कोटि के सहचर प्रदिश कहलाते हैं। समीकरण (1) से स्पष्ट है कि n – विमीय आकाश इस राशि के n घटक होते हैं। अतः त्रिविमीय आकाश में इस राशि के 3 घटक होंगे अर्थात् यह भी सदिश राशि के घटकों के अनुरूप होते हैं।

प्रथम कोटि के सहचर प्रदिश का रूपान्तरण

(ii) द्वितीय कोटि का सहचर प्रदिश (Covariant tensor of rank two)

माना किसी राशि के S निर्देश तंत्र में n2 घटक  निर्देशांक xu(u = 1, 2, 3,…..n.) के फलन हैं तथा इसी राशि के S’ निर्देश तंत्र में घटक Auv (uv= 1, 2, 3, …..n) निर्देशांक xu के फलन हैं। यदि ये निम्न रूपान्तरण समीकरण द्वारा सम्बन्धित हो तो

वे द्वितीय कोटि के सहचर प्रदिश कहलाते हैं। समीकरण (3) से स्पष्ट है कि n-विमीय आकाश में  इस राशि के n2 घटक होते हैं। अतः त्रिविमीय आकाश में इस राशि के 9 घटक होंगे। इसी प्रकार n – विमीय आकाश में कोटि के प्रदिश में nP घटक होते हैं।

2.6 निश्चर प्रदिश (INVARIANT TENSOR)

यदि कोई राशि (x1, x 2 x 3 ) एक निर्देश तंत्र से दूसरे निर्देश तंत्र में रूपान्तरण से परिवर्तित नहीं होती है तो वह राशि निश्चर या अदिश या शून्य कोटि का निश्चर प्रदिश कहलाती है। माना किसी राशि का मान एक निर्देश तंत्र में (x1,x2, x3 ) है तथा दूसरे तंत्र में (x1, x2, x3) है तो वे निश्चर होंगी यदि

3

दूसरी निश्चर राशि AJBj है।

प्रतिचर तथा सहचर प्रदिशों की परिभाषा से,

अत: AJBj निश्चर होता है।

2. 7 मिश्रित प्रदिश (MIXED TENSOR)

यदि किसी प्रदिश में मूधीक एवं पादांक दोनों प्रकार के सूचकांक तथा निम्न रूपान्तरण समीकरण द्वारा सम्बन्धित हो तो वह दो कोटि का मिश्रित प्रदिश कहलाता है।

यहाँ एक निर्देश तंत्र में किसी राशि के n 2 घटक Aj (ij = 1,2,3,.n) निर्देशांक xu (1,2,3… ..n.) के फलन है तथा दूसरे निर्देश तंत्र में उसी राशि से n2 टक Avu (u, v =1,2,3………….n) निर्देशांक फलन है।

इसी प्रकार उच्चतर कोटि के मिश्रित प्रदिश निम्न रूपान्तरण समीकरण द्वारा रूपान्तरित होते हैं।

यहाँ प्रदिश में पाँच सूचकांक है, अतः यह पाँच कोटि का प्रदिश होगा तथा n-विमीय आकाश में इसके n5 घटक होंगे।

(i) क्रोनेकर डेल्टा  एक मिश्रित प्रदिश है।

क्रोनेकर डेल्टा एक मिश्रित प्रदिश होता है, यह सिद्ध करने के लिए क्रोनेकर डेल्टा  को समीकरण (1) में रखते हैं।

इस रूपान्तरण का अस्तित्व रहता है यदि i=j अन्यथा  के लिए i = j रखने पर,

क्रोनेकर डेल्टा  एक निश्चर राशि होती है जो क्रोनेकर डेल्टा का गुणधर्म है तथा मिश्रित प्रदिश की भांति रूपान्तरित होता है। अतः एक मिश्रित प्रदिश है।

2.8 प्रदिश कोटि ( RANK OF A TENSOR)

प्रदिश की कोट का तात्पर्य उसमें मूक सूचकांक के अतिरिक्त सभी सूचकांकों की संख्या से होता है। मूक सूचकांक वह सूचकांक होता है जो पादाक्षर एवं मूर्धांक में एक जैसा हो। उदाहरणार्थ  एक तीन कोटि का मिश्रित प्रदिश होता है । 1n- विमीय आकाश में इस राशि के n घटक होते हैं।

2.9 सममित एवं प्रतिसममित प्रदिश (SYMMETRIC AND SKEW SYMMETRIC TENSORS)

(i) सममित प्रदिश (Symmetric Tensor)

यदि किन्हीं दो प्रतिचर सूचकांकों को आपस में बदलने पर प्रदिश के घटक समान रहे तो प्रदिश प्रतिचर सूचकांकों के सापेक्ष सममित कहलाता है। इसी प्रकार यदि किसी दो सहचर सूचकांकों को आपस में बदलने पर प्रदिश के घटक समान रहे तो प्रदिश सहचर सूचकांकों के सापेक्ष सममित कहलाता है।

उदाहरणार्थ यदि  तो प्रतिचर सूचकांकों के सापेक्ष सममित कहा जाता है और यदि Auv = Avu तो यह सहचर सूचकांकों के सापेक्ष सममित कहा जाता है।

प्रदिश के सममित गुणधर्म को उच्चतर कोटि के प्रदिश में भी प्रयुक्त किया जा सकता है।

उदाहरणार्थ यदि तो यह प्रतिचर सूचकांकों के सापेक्ष सममित होता है और यदि तो यह सहचर सूचकांकों के सापेक्ष सममित होता है।

प्रदिश का सममित गुण एक निर्देश तंत्र से दूसरे निर्देश तंत्र में रूपान्तरण से संरक्षित रहता है।

(ii) प्रतिसममित प्रदिश (Skew Symmetric Tensor)

यदि प्रदिश में किन्हीं दो प्रतिचर या सहचर सूचकांकों को परस्पर बदलने से उनके घटकों के चिन्ह (अर्थात् से + या + से) बदल जाये तो वह प्रदिश उन सूचकांकों के सापेक्ष प्रतिसममित कहलाता है।

उदाहरणार्थ यदि Ajik = – Ajik तो यह प्रतिचर सूचकांकों के सापेक्ष प्रतिसममित कहा जाता है तथा यदि Aav = – Auv हो तो यह सहचर सूचकांकों के सापेक्ष प्रतिसममित कहा जाता है।

प्रदिश के प्रतिसममित गुणधर्म को उच्चतर कोटि के प्रदिश में भी प्रयुक्त किया जा सकता है।

उदाहरणार्थ यदि  तो यह प्रतिचर सूचकांकों के सापेक्ष प्रतिसममित होता है और यदि  तो यह सहचर सूचकांकों के सापेक्ष प्रतिसममित होता है।

प्रदिश का प्रतिसममित गुण एक निर्देश तंत्र से दूसरे तंत्र में रूपान्तरण से संरक्षित रहता है ।

2.10 दूरीक या मेट्रिक प्रदिश (METRIC TENSOR)

हम जानते हैं कि वक्र रेखी निर्देश तंत्र में रेखा अल्पांश के लिये

आधार सदिशों के अदिश गुणनफल bi, bj को gij से व्यक्त किया जाता है, इसे दूरीक गुणांक (metric coefficients) कहते हैं।

यदि निर्देश तंत्र लाम्बिक नहीं है तो त्रिविमीय आकाश में gij के 9 घटक प्राप्त होते हैं तथा ये xi के फलन होते हैं।

इस प्रकार समीकरण (2) से,

अतः समीकरण (4) से यह स्पष्ट है कि giji व्युत्क्रमणीय (non singular) सारणिक होना चाहिए अर्थात् Det gij ≠ (0) तथा सममित अर्थात् gij = gij

(i) दूरिक प्रदिश का रूपान्तरण (Transformation of metric tensor) चूँकि रेखा अल्पांश का वर्ग सभी निर्देश तंत्रों में निश्चर रहता है,

यह सहचर प्रदिश guv के घटकों का रूपान्तरण समीकरण है। अतः दूरिक प्रदिश द्वितीय कोटि का सहचर प्रदिश होता है।

(ii) gij का संयुग्मी या व्युत्क्रम प्रदिश (Conjugate or reciprocal of gi tensor)

शून्येतर (non-zero ) सारणिक के लिए Det g or g≠ 0, प्रदिश gij को निम्न संबंध द्वारा परिभाषित करते हैं,

gij द्वितीय कोटि का प्रतिचर प्रदिश होता है तथा इसे gij का संयुग्मी या व्युत्क्रम प्रदिश कहते हैं। यदि g= [gjj] है तो gij का सहगुणक ( cofactor) या G(i,j) सारणिक g में वीं पंक्ति व i वीं स्तम्भ को विलोपित कर प्राप्त सारणिक का (1) गुना होता है।

चूँकि G(i,j) = G (j, i) है इसलिये gij एक सममित प्रदिश होता है।

सारणिक गुणक से

हम जानते हैं कि यदि द्वितीय कोटि के सममित सहचर तथा प्रतिचर प्रदिश का आंतर गुणनफल निम्न समीकरण को संतुष्ट करता है।

तो वे संयुग्मी (conjugate) प्रदिश कहलाते हैं इसलिए gkj एक सममित प्रतिचर तथा gij का संयुग्मी प्रदिश होता है।

2.11 सह प्रदिश (ASSOCIATE TENSOR)

किसी प्रतिचर प्रदिश Au का दूरिक प्रदिश Buv के साथ आंतर गुणनफल Au का सहप्रदिश Av कहलाता है।

इसी प्रकार सहचर प्रदिश Ai का दूरिक प्रदिश gij के साथ आंतर गुणनफल Ai का सहप्रदिश ‘Ajकहलाता है।

इस प्रकार प्रदिश का guv तथा gij के साथ आंतर गुणनफल प्रदिशों के सूचकांकों को क्रमशः गिराने एवं उठाने (lowering and raising) का काम करता है।

माना समीकरण (1) सत्य है। समीकरण (1) में Έμν तथा gu के रूपान्तरण समीकरण रखने

परन्तु यह सहचर प्रदिश का रूपान्तरण सम्बन्ध है इसलिये समीकरण (1) सत्य है । सूचकांकों को गिराने एवं उठाने का प्रक्रम उच्चतर कोटि के प्रदिशों में भी किया जा सकता है। उदाहरणार्थ

Leave a Reply

Your email address will not be published. Required fields are marked *