WhatsApp Group Join Now
Telegram Join Join Now

चक्रण मात्र सूत्र (spin only formula in hindi) , कक्षक चक्रण अथवा L-S युग्मन orbital spin diagram in hindi

(spin only formula in hindi) चक्रण मात्र सूत्र कक्षक चक्रण अथवा L-S युग्मन orbital spin diagram in hindi ?

चक्रण मात्र सूत्र (spin only formula)

किसी पदार्थ के मोलर प्रवृत्ति χmकी सहायता से यह ज्ञात किया जा सकता है कि उस पदार्थ के प्रति परमाणु अथवा आयन के कितने अयुग्मित इलेक्ट्रॉन है। इसके लिए चुम्बकीय आघूर्ण के चक्रण मात्र सूत्र का उपयोग किया जाता है जिसके अनुसार –

μ = [4S(S+1)]1/2= 2[S(S+1)]1/2

यहाँ S कुल चक्रण कोणीय आघूर्ण क्वांटम संख्या है जो परमाणु अथवा आयन के अयुग्मित इलेक्ट्रॉन (n) के साथ S = n/2 द्वारा सम्बंधित है , अत:

μ = [n(n+2)]1/2

प्रथम संक्रमण श्रेणी तत्वों के संकुलों के चुम्बकीय आघूर्ण के प्रायोगिक मान तथा चक्रण मात्र सूत्र द्वारा परिकलित मानों को नीचे सारणी में दिया जा रहा है , इन मानों में पर्याय समानता है , इससे सिद्ध होता है कि चक्रण मात्र सूत्र संकुलों के चुम्बकीय गुणों का अध्ययन करने में सही और उपयोगी है।

केन्द्रीय धातुd इलेक्ट्रॉनों की संख्याअयुग्मित इलेक्ट्रॉन की संख्याμप्रायोगिक ,BMΜपरिकलित ,BM
Ti3+111.731.73
V4+111.68-1.781.73
V3+222.75-2.852.83
V2+333.80-3.903.88
Cr3+333.70-3.903.88
Mn4+333.8-4.03.88
Cr2+444.75-4.904.90
Mn3+444.90-5.04.90
Mn2+555.65-6.15.92
Fe3+555.7-6.05.92
Fe2+645.10-5.704.90
Co3+644.90
Co2+734.30-5.203.88
Ni3+733.88
Ni2+822.80-3.502.83
Cu2+911.70-2.201.73

उदाहरण : चक्रण सूत्र द्वारा Co3+आयन के लिए [Co(F)6]3-संकुलों के चुम्बकीय आघूर्ण परिकलित कीजिये।

हल : चूँकि Fएक दुर्बल लिगेंड है अत: [Co(F)6]3-आयन में Co3+के पास चार अयुग्मित इलेक्ट्रॉन होंगे। अत: यहाँ n = 4 होगा।

चुम्बकीय आघूर्ण

µ = [n(n+2)]1/2

= [4(4+2)]1/2

= (24)1/2

= 4.9

उदाहरण : एक संकुल का चुम्बकीय आघूर्ण √15 है। इसमें अयुग्मित इलेक्ट्रॉन की संख्या ज्ञात कीजिये।

उत्तर : चुम्बकीय आघूर्ण

µ = [n(n+2)]1/2=√15

n(n+2) = 15

n = 3

उदाहरण : Ti3+आयनों का केवल चक्रण सूत्र से चुम्बकीय आघूर्ण परिकलित कीजिये।

उत्तर : 1.73

पदार्थो की चुम्बकीय प्रवृत्ति से अयुग्मित इलेक्ट्रॉनों की संख्या ज्ञात की जा सकती है। या विपरीत अयुग्मित इलेक्ट्रॉनों की संख्या के आधार पर किसी संकुल के चुम्बकीय आघूर्ण के मान का परिकलन किया जा सकता है। लेकिन यहाँ एक बात याद रखने की है कि संकुलों की चुम्बकीय प्रवृत्ति में उसके अनुचुम्बकत्व तथा प्रतिचुम्बकत्व दोनों का योगदान होता है। हालाँकि अनुचुम्बकीय की तुलना में प्रतिचुम्बकत्व का योगदान अत्यंत कम होता है लेकिन उसे सदैव नगण्य नहीं मान सकते। अत: पदार्थो की चुम्बकीय प्रवृत्ति के मानों में एक संशोधन गुणांक की आवश्यकता पड़ती है। कई प्रतिचुम्बकीय पदार्थो की चुम्बकीय प्रवृत्ति के आधार पर कई आयनों , परमाणुओं , अणुओं आदि की चुम्बकीय प्रवृत्ति ज्ञात की गयी है जिसे संशोधन गुणांक के रूप में प्रयुक्त किया जा सकता है।

सारणी : प्रतिचुम्बकीय प्रवृत्ति:-

आयनआयन
धनायनऋणायन
Li+-1.0F-9.1
Na+-6.8Cl-23.4
K+-14.9Br-34.6
Rb+-22.5I-50.6
Cs+-35.0NO3-18.9
Ti+-35.7CIO3-30.2
NH4+-13.3ClO4-32.0
Hg2+-40.0CN-13.0
Mg2+-5.0NCS-31.0
Zn2+-15.0OH-12.0
Pb2+-32.0SO42--40.1
Ca2+-10.4O2--12.0
उदासीन परमाणुउदासीन परमाणु
H-2.93As(III)-20.9
C-6.0Sb(III)-74.0
N (वलय)-4.61F-6.3
N (खुली श्रृंखला)-5.57Cl-20.1
N (इमाइड)-2.11Br-30.6
O (ईथर अथवा एल्कोहल)-4.61I-44.6
O (एल्डिहाइड या कीटोन)-1.73S-15.0
P-26.3Se-23.0
As (V)-43.0
कुछ सामान्य लिगेंडकुछ सामान्य लिगेंड
H2O-13C2O42--25
NH3-18एसिटिल एसीटोनेट-52
C2H4-15पिरीडीन-49
CH3COO-30बाइपिरीडाइल-105
अवयवी संशोधनअवयवी संशोधन
C=C5.5N=N1.8
C=C-C=C10.6C=N-R8.2
C≡C0.8C-Cl3.1
बेंजीन वलय C0.24C-Br4.1

इस प्रकार प्रतिचुम्बकीय प्रवृति का संशोधन करने के बाद प्राप्त संशोधित अनुचुम्बकीय प्रवृत्ति अणु के स्थायी चुम्बकीय आघूर्ण μ के साथ निम्नलिखित प्रकार से सम्बन्धित होती है –

χM= N2μ2/3RT . . .. . . .. . . .समीकरण-1

जहाँ N = एवोगेड्रो संख्या , R = आदर्श गैस स्थिरांक , T = परमताप और μ = बोर मैग्नेटोन (BM) में चुम्बकीय आघूर्ण (1 BM = eh/4πm) |

समीकरण-1 को हल करने पर –

μ = (3RT χM/N2)1/2

स्थिरांक N और R के मान रखकर हल करने पर –

μ = 2.84 (χMT)1/2

कक्षक चक्रण अथवा L-S युग्मन

किसी पदार्थ में उसके अयुग्मित इलेक्ट्रॉनों के कक्षकीय और चक्रण गति के कारण उसमें अनुचुम्बकीय आघूर्ण उत्पन्न होता है .इनमे तीन प्रकार के युग्मन की सम्भावना है – चक्रण चक्रण (S-S) , कक्षक-कक्षक (L-L) तथा कक्षक-चक्रण (L-S) , कुछ संकुलों विशेषकर लैन्थेनाइड संकुलों में तीनों प्रकार के युग्मन को ध्यान में रखा जाता है .अत: ऐसे संकुलों का सैद्धांतिक अनुचुम्बकीय आघूर्ण निम्नलिखित समीकरण द्वारा दिया जा सकता है –

μ = g [J (J+1)]1/2

जहाँ J = कुल कोणीय संवेग क्वांटम संख्या और g = लैंडे विपाटन गुणांक , जिसे निम्नलिखित प्रकार से परिभाषित किया जा सकता है –

g = 1 + [J(J+1) + S(S+1) – L(L+1)]/2J(J+1)

J का मान कुल कक्षीय कोणीय संवेग क्वांटम संख्या L और कुछ चक्रण कोणीय संवेग क्वान्टम संख्या S पर निर्भर करता है। उपर्युक्त सूत्रों से लैंथेनाइडो के संकुलों के चुम्बकीय आघूर्ण के मान तो काफी सही प्राप्त होते है लेकिन संक्रमण तत्व संकुलों के मान प्रायोगिक मानों से काफी भिन्न प्राप्त होते है। इनके लिए कक्षकीय तथा चक्रीय कोणीय संवेगों के मान अलग अलग कार्य करते है। इलेक्ट्रॉन के चक्रण मात्र के लिए S = 0 , J = S और g = 2 जबकि इलेक्ट्रॉन की कक्षीय गति के लिए S = 0 , J = L और g = 1 होता है तब –

μ = [4S(S+1) + L(L+1)]1/2 समीकरण-2

एवं इसमें यदि कक्षीय योगदान नहीं होता हो तो समीकरण-2 केवल चक्रण सूत्र अथवा चक्रण मात्र सूत्र का रूप ग्रहण कर लेती है।

J के दो निकटवर्ती मानों J’ और (J’ + 1) के मध्य ऊर्जा का अंतर (J’+1)λ द्वारा प्रदर्शित किया जाता है। जहाँ λ = चक्रण कक्षक युग्मन स्थिरांक।

उदाहरण , एक d2विन्यास के लिए अष्टफलकीय क्षेत्र में3F अवस्था तीन अवस्थाओं3F2,3F3,3F4में विपाटित हो जाता है , इन दोनों क्रमशः जोड़ों (3F2,3F3और3F33F4) में ऊर्जा का अंतर क्रमशः 3λ और 4λ होगा। एक चुम्बकीय क्षेत्र में भिन्न भिन्न J मानों वाली इन अवस्थाओं का पुनः (2J+1) अवस्थाओं में विपाटन हो जाता है जिनमें भिन्न भिन्न ऊर्जा स्तर g μBB0द्वारा पृथक पृथक रहते है जहाँ g = लैंडे विपाटन गुणांक और B0= चुम्बकीय क्षेत्र।

इन ऊर्जा स्तरों में ऊर्जा का बहुत कम अंतर होता है , इसी से इलेक्ट्रॉन चक्रण अनुनाद स्पेक्ट्रोस्कोपी सम्बद्ध होती है। एक d2आयन के कुल विपाटन पैटर्न दर्शाया गया है।