JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now

हिंदी माध्यम नोट्स

Class 6

Hindi social science science maths English

Class 7

Hindi social science science maths English

Class 8

Hindi social science science maths English

Class 9

Hindi social science science Maths English

Class 10

Hindi Social science science Maths English

Class 11

Hindi sociology physics physical education maths english economics geography History

chemistry business studies biology accountancy political science

Class 12

Hindi physics physical education maths english economics

chemistry business studies biology accountancy Political science History sociology

Home science Geography

English medium Notes

Class 6

Hindi social science science maths English

Class 7

Hindi social science science maths English

Class 8

Hindi social science science maths English

Class 9

Hindi social science science Maths English

Class 10

Hindi Social science science Maths English

Class 11

Hindi physics physical education maths entrepreneurship english economics

chemistry business studies biology accountancy

Class 12

Hindi physics physical education maths entrepreneurship english economics

chemistry business studies biology accountancy

Categories: physics

van’t hoff isotherm equation derivation in hindi वान्टहाफ समतापी का सूत्र क्या है व्यंजक सूत्र

वान्टहाफ समतापी का सूत्र क्या है व्यंजक सूत्र van’t hoff isotherm equation derivation in hindi ?

रासायनिक अभिक्रियाओं में मुक्त ऊर्जा परिवर्तनः वान्टहाफ समतापी (Free Energy Change in a Chemical Reaction: van’t Hoff’s Isotherms) किसी रासायनिक अभिक्रिया में होने वाले मुक्त ऊर्जा परिवर्तन का परिकलन वान्टॉफ ने किया है। मुक्त ऊर्जा परिवर्तन से अभिक्रिया की स्वतः प्रवर्तिता का अध्ययन किया जा सकता है। अर्थात् अभिक्रिया के होने की दिशा का ज्ञान हो सकता है।

हैं।

एक सामान्य अभिक्रिया

n1A+ n2B → m1C+m2D

गैसीय अवस्था में सम्पन्न होती है । n1 n2.m1.m2. क्रमश: A, B, C तथा D के मोलों की संख्यायें है ।

उपरोक्त समीकरण में मुक्त ऊर्जा में अत्यन्त सूक्ष्म परिवर्तन dG को निम्न प्रकार एक ऊष्मागतिक व्यंजक (Thermodynamic expression) द्वारा व्यक्त किया जाता है-

dG = SdT + VdP ……………………….(24)

यहाँ S = एन्ट्रॉपी, V = कुल आयतन

dT = ताप में परिवर्तन तथा dP दाब में परिवर्तन है।

यदि अभिक्रिया स्थिर ताप पर होती है तो dT = 0

C = समाकलन स्थिरांक है। जिसका मान

P = 1 वायुमण्डल (मानक दाब) रंख ज्ञात किया जा सकता है। उस अवस्था में G° = C;   G° = मानक अवस्था में मुक्त ऊर्जा है।

ऊष्मागतिकी द्वारा द्रव्य अनुपाती किया नियम का व्यंजक ज्ञात करना- (Themodynamic derivation of law of Mass Action)

समीकरण (30) द्रव्य अनुपाती क्रिया नियम को आंशिक दाब के रूप में व्यक्त करती है।

सक्रिय द्रव्यमान के रूप में उपरोक्त नियम को रासायनिक विभव के माध्यम से प्राप्त किया जा सकता है।

किसी पदार्थ के रासायनिक विभव और उसके सक्रिय द्रव्यमान में सम्बन्ध निम्न प्रकार से दिया जा सकता है

U = u0 + RT Ina …………………….(35)

यहाँ μ = पदार्थ का रासायनिक विभव तथा u° = इकाई सक्रियता (a = 1) की मानक अवस्था में पदार्थ का रासायनिक विभव है।

a = पदार्थ की सक्रियता है, जिसे पूर्व में सक्रिय द्रव्यमान अथवा प्रभावी सान्द्रता कहा गया है। R = गैस स्थिरांक और T = परम ताप हैं।

एक सामान्य अभिक्रिया n1A+ n2B  – m1 C+m2D के लिये A, B, C तथा D के रासायनिक विभव के मान निम्न प्रकार से व्यक्त किये जा सकते हैं।

समीकरण (35) भी वान्टहॉफ समतापी का दूसरा रूप है जहां आंशिक दाबों के स्थान पर पदार्थों

की सक्रियता अर्थात् सक्रिय द्रव्यमान लिये गये हैं। यदि उपरोक्त अभिक्रिया साम्यवस्था में हो तो अर्थात्

n1A + n2B = m1C+m2D

तो G = 0 समीकरण (35) में G = 0 रखने पर

यहाँ G° अभिक्रिया की मानक गिब्स ऊर्जा है जो कि स्थिर ताप पर स्थिर रहती है। अर्थात् किसी दिए गए ताप पर मान ऊर्जा  G° का मान एक स्थिरांक होता है। अतः उपरोक्त समीकरण का दाहिना भाग स्थिरांक

यदि अभिकारक तथा उत्पाद आदर्श गैस हो तो उनकी सक्रियता उनकी सान्द्रता के बराबर होगी अतः

K. को अभिक्रिया का साम्य स्थिरांक कहते हैं यही सक्रिय द्रव्यमान का नियम है।

अतः – G° = RT In. Kc ……..(36)

समीकरण (35) तथा (36) द्वारा

समीकरण (35) तथा (37) वान्टहॉफ समतापी (Van’t Hoff Isotherms) कहलाते हैं। समीकरण (36) द्रव्य अनुपाती क्रिया नियम को व्यक्त करती है।

समीकरण (34) तथा (39) द्वारा Kp तथा Kc का मान ज्ञात होने पर G° की गणना की जा सकती है।

साम्यवस्था स्थिरांक और मुक्त ऊर्जा (Equilibrium Constant and Free energy ) समीकरण (34) तथा (39) साम्यवस्था स्थिरांक और मुक्त ऊर्जा में परिवर्तन दर्शाती है। G° के चिन्ह द्वारा यह जाना जा सकता है कि अभिक्रिया किस दिशा में स्वतः प्रवर्तित है। अर्थात अग्र अभिक्रिया स्वतः प्रवर्तित है अथवा प्रतीप अभिक्रिया स्वतः प्रवर्तित है ।

समीकरण (32) तथा ( 38 ) द्वारा अभिक्रिया के लिये दो संभावनायें संभव है।

(i) यदि G° धनात्मक (+ve) है: यदि G° = + ve है तो log Kp अथवा Kc का मान एक से कम होगा। अतः प्रतीप अभिक्रिया स्वतः प्रवर्तित होगी ।

दूसरे शब्दों में कहा जा सकता है कि अग्र अभिक्रिया धीमी और प्रतीप अभिक्रिया तीव्र होगी। इसलिये साम्यवस्था पर उत्पादों की सान्द्रता बहुत कम और अभिकारकों की सान्द्रता अधिक होगी। अतः K, अथवा K. का मान एक से कम प्राप्त होता है ।

(ii) यदि G° ऋणात्मक (-ve) है: यदि G° = – ve है तो log Ko का मान धनात्मक होगा। अर्थात् Kp अथवा Kc का मान एक से अधिक होगा।

दूसरे शब्दों में कहा जा सकता है कि अग्र अभिक्रिया तीव्र और प्रतीप अभिक्रिया धीमी होगी। इसलिये साम्यवस्था पर उत्पादों की सान्द्रता बहुत अधिक और अभिकारकों की सान्द्रता कम होगी। अतः Kc अथवा Kp का मान एक से अधिक प्राप्त होता है । अतः अग्र अभिक्रिया स्वतः प्रवर्तित होगी ।

समआयतनिक अभिक्रिया समीकरण (Reaction Isochore Equation)

रासायनिक साम्य स्थिरांक पर ताप के प्रभाव का अध्ययन करने के लिये वान्ट हॉफ ने समतापी (Isothems) समीकरण और गिब्ज हेल्मोल्ट्स समीकरण का उपयोग करके समआयतनिक समीकरण (Isochore) व्युत्पन्न की है।

अध्याय 2 में हमने गिब्ज हैल्मोल्टस समीकरण (Gibbs Helmoltzs Equation) का अध्ययन किया है जो कि समीकरण ( 200 ) द्वारा व्यक्त की गई है।

समीकरण (43) वान्ट हॉफ समआयतनिक समीकरण (Van’t Hoff Isochore) कहलाती है।

उपरोक्त समीकरण का उपयोग किसी अभिक्रिया में हुये ऊष्मा परिवर्तन (Change in Heat content) की गणना के लिये किया जाता है। यदि किसी अभिक्रिया के साम्य स्थिरांक दो भिन्न ताप पर ज्ञात हो तो उस अभिक्रिया के पूर्ण ऊष्मा परिवर्तन (H) की गणना की जा सकती है।

 Kc के रूप में सम आयतनिक अभिक्रिया समीकरण (Reaction Isochore in terms of K ) आंशिक दाब के रूप में साम्य स्थिरांक Kp तथा सान्द्रता के रूप में साम्य स्थिरांक Kc के मध्य  सम्बन्ध समीकरण ( 8 ) द्वारा दर्शाया गया है

यहाँ E स्थिर आयतन पर अभिक्रिया ऊष्मा है। समीकरण (49) Kc के रूप में समआयतनिक अभिक्रिया समीकरण है। उपरोक्त समीकरण का उपयोग भी स्थिर आयतन पर अभिक्रिया ऊष्मा की गणना के लिए किया जाता है। यदि किसी अभिक्रिया के साम्य स्थिरांक अलग-अलग तापों पर ज्ञात हो तो स्थिर आयतन पर अभिक्रिया ऊष्मा (E) की गणना की जा सकती है।

Sbistudy

Recent Posts

four potential in hindi 4-potential electrodynamics चतुर्विम विभव किसे कहते हैं

चतुर्विम विभव (Four-Potential) हम जानते हैं कि एक निर्देश तंत्र में विद्युत क्षेत्र इसके सापेक्ष…

2 days ago

Relativistic Electrodynamics in hindi आपेक्षिकीय विद्युतगतिकी नोट्स क्या है परिभाषा

आपेक्षिकीय विद्युतगतिकी नोट्स क्या है परिभाषा Relativistic Electrodynamics in hindi ? अध्याय : आपेक्षिकीय विद्युतगतिकी…

4 days ago

pair production in hindi formula definition युग्म उत्पादन किसे कहते हैं परिभाषा सूत्र क्या है लिखिए

युग्म उत्पादन किसे कहते हैं परिभाषा सूत्र क्या है लिखिए pair production in hindi formula…

6 days ago

THRESHOLD REACTION ENERGY in hindi देहली अभिक्रिया ऊर्जा किसे कहते हैं सूत्र क्या है परिभाषा

देहली अभिक्रिया ऊर्जा किसे कहते हैं सूत्र क्या है परिभाषा THRESHOLD REACTION ENERGY in hindi…

6 days ago

elastic collision of two particles in hindi definition formula दो कणों की अप्रत्यास्थ टक्कर क्या है

दो कणों की अप्रत्यास्थ टक्कर क्या है elastic collision of two particles in hindi definition…

6 days ago
All Rights ReservedView Non-AMP Version
X

Headline

You can control the ways in which we improve and personalize your experience. Please choose whether you wish to allow the following:

Privacy Settings
JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now