JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now

हिंदी माध्यम नोट्स

Categories: chemistry

चक्रण बहुकता (spin multiplicity meaning in hindi) l-s युग्मन पर टिप्पणी क्या है , L-S युग्मन किसे कहते है ?

(spin multiplicity meaning in hindi) चक्रण बहुकता l-s युग्मन पर टिप्पणी क्या है , L-S युग्मन किसे कहते है ?

चक्रण बहुकता (spin multiplicity)

n अयुग्मित इलेक्ट्रॉनयुक्त किसी इलेक्ट्रॉनिक अवस्था के लिए उसकी कुल चक्रण क्वांटम संख्या S होती है , जो n/2 के बराबर होती है। जैसा कि हम जानते है किसी अवस्था की चक्रण बहुकता को (2s+1) द्वारा दर्शाया जाता है तथा इसके मान के आधार पर सिंगलेट अथवा एकक तथा ट्रिप्लेट अथवा त्रियक अवस्थाएं बनती है।

अत: यदि (2s+1) = 1 , एकक अवस्था (यहाँ s = 0 है) तथा यदि (2s+1) = 3 , त्रियक अवस्था (यहाँ s = 1 है) यदि किसी स्पीशीज में दो अयुग्मित इलेक्ट्रॉन हो तथा उनके चक्रण विपरीत हो अर्थात +1/2 और -1/2 हो तो s = 0 हो जाएगा एवं वह अवस्था एकक अवस्था होगी।  इसके विपरीत यदि दोनों अयुग्मित इलेक्ट्रॉनों का चक्रण समानान्तर हो अर्थात +1/2 और +1/2 अथवा -1/2 और -1/2 तो s = 1 हो जायेगा तथा वह अवस्था त्रियक अवस्था होगी।

L-S युग्मन की कई विधियाँ हो सकती है जिनमें से मुख्य दो विधियाँ निम्नलिखित है –

  1. समस्त इलेक्ट्रॉनों के s अवयव मिलकर परिणामी चक्रण आघूर्ण s दे तथा समस्त l अवयव मिलकर परिणामी कक्षकीय आघूर्ण L दे फिर दोनों परिणामी S और L सदिश रूप से युग्मित होकर कुल आघूर्ण J उत्पन्न करते है अत:

[(S1 S2 S. . . .. . . .)(l1 l2 l3 . . . . . .. . )] = (S – L) = J

इसे रुजल सोंडर्स युग्मन (russell saunders coupling) कहते है।

  1. दूसरी सम्भावना यह है कि प्रत्येक इलेक्ट्रॉन का चक्रण आघूर्ण siऔर कक्षकीय आघूर्ण liयुग्मित हो जाए तथा प्रत्येक इलेक्ट्रॉन के परिणामी आघूर्ण Ji संयुक्त होकर कुल आघूर्ण J उत्पन्न करे अर्थात

[(s1 l1) , (s2 l2) . . . . .] = (j1 , j. . . . . . )  = J

इसे j j युग्मन कहते है।

किसी स्पीशीज में यदि एक संयोजकता इलेक्ट्रॉन है तो उसके लिए s = 1/2 , उसी परमाणु के दो संयोजकता इलेक्ट्रॉनों के लिए परिणामी s = 1/2 + 1/2 = 1 या 1/2 – 1/2 = 0 , तीन के लिए s = 1/2 या 3/2 एवं 4 के लिए s = 0 , 1 या 2 होगा। अत: किसी परमाणु के x इलेक्ट्रॉनों के लिए इकाई के अंतर से x/2 तक होंगे , अत: x का मान सम होने पर s = 0 , 1 , 2 . . . . . .. . x/2 और x का मान विषम होने पर s = 1/2 , 3/2 , 5/2 . . .. . . x/2 होंगे।

दो इलेक्ट्रॉनों के लिए कक्षकीय आघूर्ण L के परिणामी मान निम्नलिखित हो सकते है –

|l1 – l2| ≤ L ≤ l1 + l2

L का मान सदैव एक पूर्ण संख्या होता है। S और L के युग्मन से J प्राप्त होता है। अत:

|L-S| ≤ J ≤ |L + S|

जिस परमाणु में इलेक्ट्रॉनों की संख्या विषम हती है उनके लिए J का मान अर्द्धपूर्ण संख्या होता है जबकि इलेक्ट्रॉनों की संख्या सम होने पर J का मान एक पूर्ण संख्या होती है।

क्यूरी का नियम (curie’s law)

पियरे क्यूरी ने सन 1895 में चुम्बकीय पदार्थो के लिए एक नियम दिया जिसे क्यूरी का नियम कहते है। इस नियम के अनुसार किसी पदार्थ की संशोधित अनुचुम्बकीय प्रवृत्ति ΧM उसके परमताप के व्युत्क्रमानुपाती होती है अर्थात

ΧM ∝ 1/T

या

ΧM = C/T

जहाँ C = क्यूरी स्थिरांक = N μeff2/3k

C का मान रखने पर –

ΧM = N μeff2/3kT

अत:

μeff2 = (3kT ΧM/N)1/2

समीकरण में वोल्टजमान स्थिरांक k और ऐवोगैड्रो स्थिरांक N के मान रखकर हल करने पर ,

μeff = 2.84 √ ΧM x T  BM

यह समीकरण चिरसम्मत सिद्धान्त के अनुरूप ही है जिसके अनुसार किसी पदार्थ की संशोधित अथवा अनुचुम्बकीय मोलर प्रवृत्ति ΧM उसके स्थायी अनुचुम्बकत्व आघूर्ण μ के साथ निम्नलिखित प्रकार से सम्बन्धित होती है –

ΧM = N2 μ2/3RT

यदि μ को बोर मैग्नेटोन BM में दर्शाया जाए तथा आदर्श गैस स्थिरांक R और एवोगैड्रो स्थिरांक N के मान रखकर समीकरण को हल किया जाये तो पदार्थ के स्थायी द्विध्रुव आघूर्ण μ का मान निम्नानुसार होगा –

μ = (3RT ΧM/N2)1/2 = 2.84 (ΧMT)1/2

क्यूरी बीज का नियम : क्युरी का नियम उन सब अनुचुम्बकीय पदार्थो पर लागू किया जा सकता है जो चुम्बकीय तनु है अर्थात जिनके अनुचुम्बकीय केंद्र प्रतिचुम्बकीय परमाणुओं द्वारा भली भांति पृथक किये हुए रहते है। वे पदार्थ जो चुम्बकीय तनु नहीं है , उनके अनुचुम्बकीय केंद्र अर्थात अयुग्मित चक्रण निकटवर्ती अथवा पडोसी परमाणु के साथ युग्मित हो जाते है , इसे चुम्बकीय विनिमय कहते है। ऐसे पदार्थो पर क्यूरी के नियम को संशोधित करके लागू करते है। इस संशोधित नियम को क्यूरी वीज का नियम कहते है जिसके अनुसार –

ΧM = C/(T- θ)

जहाँ θ = वीज स्थिरांक जो ताप की इकाई का होता है।

क्यूरी नियम के अनुसार यदि चुम्बकीय प्रवृत्ति के व्युत्क्रम को परमताप के विरुद्ध आलेखित किया जाए तो मूल से एक सीधी रेखा प्राप्त होती है जिसका ढलान C के बराबर होता है , जो पदार्थ क्यूरी नियम का पालन नहीं करते उनके वक्र की सीधी रेखा मूल से नहीं गुजरती वरन T अक्ष को OK से ऊपर या OK से नीचे काटती है। ऐसे पदार्थो पर क्यूरी वीज नियम लागू करते है। यदि किसी पदार्थ के लिए θ का मान धनात्मक है अर्थात वक्र रेखा OK से ऊपर काटती है तो पदार्थ फेरोचुम्बकीय होता है तथा यदि वक्र रेखा OK से नीचे काटती है तो θ का मान ऋणात्मक होता है तथा ऐसे पदार्थ विपरीत फेरोचुम्बकीय होते है।

μeff और μs में अन्तर्सम्बन्ध

अनुचुम्बकीय पदार्थों में अयुग्मित इलेक्ट्रॉनों के चक्रण और कक्षकीय गति के कारण पदार्थ चुम्बकीय क्षेत्र उत्पन्न करते है , ऐसे पदार्थों का चुम्बकीय आघूर्ण चक्रण कोणीय संवेग क्वांटम संख्या S और कक्षकीय कोणीय संवेग क्वांटम संख्या L पर निर्भर करता है अत:

μ = [4S(S+1) + L(L+1)]1/2

संक्रमण धातु संकुलों में इलेक्ट्रॉनों का कक्षकीय चुम्बकीय आघूर्ण उसके चारों तरफ के परमाणुओं के विद्युत क्षेत्र द्वारा उदासीन कर दिया जाता है अत: ऐसी स्थिति में पदार्थ का चुम्बकीय आघूर्ण केवल अयुग्मित इलेक्ट्रॉनों के चक्रण के कारण ही उत्पन्न होता है तथा L = 0 हो जाता है। इस चुम्बकीय आघूर्ण को चक्रण मात्र चुम्बकीय आघूर्ण चक्रण कहते है। तथा μs द्वारा प्रदर्शित करते है , अत:

μs = [4S(S+1)]1/2

यही चक्रण मात्र सूत्र है जिसमें S = n/2 रखने पर –

μs = [n(n+2)]1/2 बोर मैग्नेटोन

जहाँ n = अयुग्मित इलेक्ट्रॉनों की संख्या , अत: एक अयुग्मित इलेक्ट्रॉन युक्त संकुल का चुम्बकीय आघूर्ण 1.73 होगा।

μs = [n(n+2)]1/2 = [1(1+2)]1/2 = √3 = 1.73 BM

लेकिन जिन संकुलों में J के मान बहुत कम होते है तथा कक्षकीय चुम्बकीय आघूर्ण उदासीन नहीं हो पाता उनके प्रभावी चुम्बकीय आघूर्ण μeff  का मान रखकर निकाला जा सकता है अर्थात

μeff = [4s(s+1) + L(L+1)]1/2

अत: μeff और μs में निम्नलिखित सम्बन्ध दर्शाया जा सकता है –

μeff = μs + L

एक अष्टफलकीय संकुल के लिए μeff और μs के मध्य निम्नलिखित सम्बन्ध होता है –

μeff = μs(1 – αλ/Δ0)

जहाँ α = एक स्थिरांक है जो निम्नतम अवस्था पर निर्भर करता है। d1 , d2 , d3 और d4 आयनों के लिए λ का मान धनात्मक होता है , अत: S-L युग्मन के कारण इनके लिए चुम्बकीय आघूर्ण का मान कम आता है। इसके विपरीत d6 , d7 , d8 और d9 आयनों के लिए λ का मान ऋणात्मक होता है अत: S-L युग्मन के कारण इनके चुम्बकीय आघुर्णों के मान उच्च होते है।

Sbistudy

Recent Posts

मालकाना का युद्ध malkhana ka yudh kab hua tha in hindi

malkhana ka yudh kab hua tha in hindi मालकाना का युद्ध ? मालकाना के युद्ध…

4 weeks ago

कान्हड़देव तथा अलाउद्दीन खिलजी के संबंधों पर प्रकाश डालिए

राणा रतन सिंह चित्तौड़ ( 1302 ई. - 1303 ) राजस्थान के इतिहास में गुहिलवंशी…

4 weeks ago

हम्मीर देव चौहान का इतिहास क्या है ? hammir dev chauhan history in hindi explained

hammir dev chauhan history in hindi explained हम्मीर देव चौहान का इतिहास क्या है ?…

4 weeks ago

तराइन का प्रथम युद्ध कब और किसके बीच हुआ द्वितीय युद्ध Tarain battle in hindi first and second

Tarain battle in hindi first and second तराइन का प्रथम युद्ध कब और किसके बीच…

4 weeks ago

चौहानों की उत्पत्ति कैसे हुई थी ? chahamana dynasty ki utpatti kahan se hui in hindi

chahamana dynasty ki utpatti kahan se hui in hindi चौहानों की उत्पत्ति कैसे हुई थी…

1 month ago

भारत पर पहला तुर्क आक्रमण किसने किया कब हुआ first turk invaders who attacked india in hindi

first turk invaders who attacked india in hindi भारत पर पहला तुर्क आक्रमण किसने किया…

1 month ago
All Rights ReservedView Non-AMP Version
X

Headline

You can control the ways in which we improve and personalize your experience. Please choose whether you wish to allow the following:

Privacy Settings
JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now