हिंदी माध्यम नोट्स
सिद्धांत शिरोमणि को कितने भागों में विभक्त किया गया है , सिद्धांत शिरोमणि ग्रंथ PDF siddhanta shiromani book was written by
siddhanta shiromani book was written by in hindi सिद्धांत शिरोमणि को कितने भागों में विभक्त किया गया है , सिद्धांत शिरोमणि ग्रंथ के लेखक या रचनाकार कौन थे ?
भास्कराचार्य
भास्कराचार्य, 12वीं शताब्दी में अग्रणी गणितज्ञों में से एक थे। उनकी पुस्तक सिद्धांत शिरोमणि को चार खण्डों में विभक्त किया गया हैः
ऽ लीलावती (अंकगणित से संबंधित)
ऽ बीजगणित (बीजगणित से संबंधित)
ऽ गोलाध्याय (गोलक के बारे में)
ऽ ग्रहगणित (ग्रहों का गणित)
अपनी पुस्तक लीलावती में उन्होंने बीजगणितीय समीकरणों का समाधान करने के लिए एक चक्रवात विधि या चक्रीय विधि का सूत्रापात किया। नौंवीं शताब्दी में, जेम्स टेलर ने लीलावती का अनुवाद किया और विश्व के लोगों को इससे अवगत कराया।
मध्य युग में, नारायण पंडित ने ऐसी गणित रचनाओं की रचना की जिसमें गणितकौमुदी और बीजगणितवतम्सा का समावेश है। नीलकंठ सोमासुत्वन ने तंत्रासंग्रह की रचना की, जिसमें त्रिकोणमितीय फलनों के नियम का समावेश है। नीलकंठ ज्योतिर्विद ने ताजिक का संकलन किया जो कि बड़ी मात्रा में फारसी तकनीकी शब्दों से संबंधित है।
फैजी ने फारसी में लीलावती का अनुवाद किया। फैजी, जो कि अकबर के दरबार से संबंधित थे, भास्कर के बीजगणित का अनुवाद किया। इसके अतिरिक्त, अकबर ने उन दिनों गणित को शिक्षा व्यवस्था में अध्ययन का एक विषय बनाने का आदेश दिया।
खगोल शास्त्र के क्षेत्र में, फिरोज शाह तुगलक ने दिल्ली में तथा फिरोज शाह बहमनी ने दौलाताबाद में वेधशाला की स्थापना की। फिरोज शाह बहमानी के दरबार के खगोल शास्त्री, महेंद्र सूरी ने यंत्राराज नामक एक खगोलीय यंत्र का आविष्कार किया।
इसके अतिरिक्त, आमेर ;।उइमतद्ध के राजा सवाई जय सिंह-प्प् ;1699.1743द्ध ने दिल्ली, जयपुर, वाराणसी, उज्जैन और मथुरा में 5 खगोलीय वेधशालाओं (जन्तर-मन्तर) की स्थापना की।
औषधि
वैदिक काल में, अश्विनी कुमार महान चिकित्सक थे और उन्हें देव तुल्य माना जाता था। वेदों एवं पुरानों में चर्चित धनवंतरी औषधि के देवता थे।
अथर्व वेद वह पहली पुस्तक थी जहाँ हमें रोग, उसके उपचार और औषधियों का उल्लेख मिलता है। इसके अनुसार, रोग, मानव शरीर में भूतों और आत्माओं के प्रवेश करने के कारण होते हैं और उन्हें जादू-टोने और मंत्रों से ठीक किया जा सकता है। अथर्व वेद में कई रोगों के उपचार का उल्लेख किया गया था जिनमें दस्त, घाव, खांसी, कुष्ठ रोग, बुखार और उद्वेग शामिल हैं।
हालाँकि, रोगों के व्यावहारिक तथा और अधिक तर्कसंगत उपचार का समय लगभग 600 ईसा पूर्व से आरम्भ होता है।
औषधि शिक्षण के केन्द्रों के रूप में तक्षशिला और वाराणसी का प्रादुर्भाव हुआ।
इस समय के दो महत्वपूर्ण प्रबंध थेः
ऽ चरक द्वारा रचित चरक संहिता (आयुर्वेद से संबंधित)
ऽ सुश्रुत द्वारा रचित सुश्रुत संहिता (शल्य चिकित्सा से संबंधित)
अत्रेय और अग्निवेश 800 ईसा पूर्व ही आयुर्वेद के सिद्धांतों से परिचित थे।
चरक संहिता
चरक संहिता मुख्य रूप से औषधीय प्रयोजनों के लिए पौधों और जड़ी-बूटियों के उपयोग से संबंधित है। यह मुख्य रूप से आयुर्वेद विज्ञान से संबंधित है, जिसके निम्नलिखित आठ अवयव हैंः
ऽ काया चिकित्सा (सामान्य चिकित्सा)
ऽ कौमार-भर्त्य (बाल चिकित्सा)
ऽ शल्य चिकित्सा (सर्जरी)
ऽ सलक्य तंत्र (नेत्रा विज्ञान/ईएनटी)
ऽ बूटा विद्या (भूत विद्या/मनोरोग)
ऽ अगाद तंत्र (विष विद्या)
ऽ रसायन तंत्र (सुधा)
ऽ वाजीकरण तंत्र (कामोत्तेजक)
चरक संहिता में, पाचन, चयापचय और प्रतिरक्षा तंत्र पर व्यापक लेख की रचना की गई है। चरक बल देकर कहते हैं कि एक मानव शरीर की क्रियाशीलता तीन दोषों पर निर्भर करती है. 1. पित्त, 2. कफ और 3. वायु। ये दोष रक्त, मांस और मज्जा की सहायता से उत्पन्न होते हैं और इन तीन दोषों के असंतुलित होने पर शरीर रोगग्रस्त हो जाता है। औषधियों का उपयोग करके इन्हें पुनः संतुलित किया जा सकता है। अपनी पुस्तक में चरक ने उपचार के बजाय रोकथाम पर अधिक जोर दिया है। चरक संहिता में अनुवांशिकी का भी उल्लेख मिलता है।
प्राचीन विज्ञान एवं प्रौद्योगिकी
परिचय
भारतीय उप-महाद्वीप के हर कोने में अध्यात्मिक विकास प्राचीन काल से ही देखने को मिला है और कई विदेशी राष्ट्र इससे आकर्षित भी हुए हैं। इस देश पर आक्रमण करने वाले आक्रमणकारियों ने भी कई भारतीय धर्मों जैसे बौद्ध, जैन और हिन्दू धर्म को अपनाया है जिनमें यूनानी, फारसी, हूण और मंगोल भी शामिल थे। विश्व की भौतिक संस्कृति को समृद्ध बनाने में भारत ने भी बड़ा योगदान दिया है। बात चाहे इत्रों के आसवन, रंगों के निर्माण, चीनी के निष्कर्षण, कपड़ा बुनाई, बीजगणित एवं कलन गणित संबंधी तकनीक, शून्य की अवधारणा, शल्यचिकित्सा संबंधी तकनीक, परमाणु एवं सापेक्षता की अवधारणाओं, दवा के हर्बल सिस्टम, कीमियागीरी की तकनीक, धातु प्रगलन, शतरंज के खेल की हो या कराटे के मार्शल आर्ट आदि की, इन सब के साक्ष्य प्राचीन भारत में देखने को मिलते हैं और इस बात के प्रमाण भी मिले हैं जो यह दर्शाते हैं कि उनकी उत्पत्ति संभवतः यहीं हुई थी।
इससे यह संकेत मिलता है कि भारत के पास वैज्ञानिक विचारों की एक समृद्ध विरासत है। आइये, अब उन विभिन्न क्षेत्रों पर दृष्टि डालते हैं जहाँ हमें भारत के विभिन्न वैज्ञानिकों के योगदान का पता चलता है।
गणित
इसे आम बोलचाल की भाषा में हिसाब (गणित) भी कहा जाता है, इसमें शामिल हैः
ऽ अंक गणित (अर्थमेटिक)
ऽ बीज गणित (अलजेब्रा)
ऽ रेखा गणित (ज्योमेट्री)
ऽ खगोल शास्त्र (एस्ट्रोनाॅमी)
ऽ ज्योतिष शास्त्र (एस्ट्रोलाॅजी)
1000 ईसा पूर्व से लेकर 1000 इसवी के मध्य, भारतीय गणितज्ञों द्वारा गणित पर अनगिनत प्रबंधों की रचना की गई जो उपरोक्त क्षेत्रों से संबंधित हैं। बीज गणित की तकनीक और शून्य की अवधारणा की उत्पत्ति भारत में ही हुई थी।
हड़प्पा की नगर योजना से पता चलता है कि उस समय के लोगों को माप और रेखा गणित का अच्छा ज्ञान था। मंदिरों में ज्यामितीय रूपांकनों के रूप में रेखा गणितीय स्वरूप देखने को मिल सकते हैं।
बीज गणित का अर्थ है ‘अन्य गणित’ क्योंकि बीज शब्द का अर्थ होता है- ‘अन्य’ या ‘दूसरा’। इस नाम का चयन इसमें निहित गणना की प्रणाली के कारण किया गया था, जिसे एक पारंपरिक गणना से अलग, एक समानांतर गणना प्रणाली के रूप में मान्यता दी गई जबकि भूतकाल में सिपर्फ पारंपरिक गणना प्रणाली का ही उपयोग होता था जो उस समय एकमात्र प्रणाली थी। इससे इस बात का पता चलता है कि वैदिक साहित्य में भी गणित का अस्तित्व था जो आशुलिपि गणना प्रणाली से संबंधित था।
गणित पर आधारित सबसे आरंभिक पुस्तक 6वीं शताब्दी ईसा पूर्व में बौधायन द्वारा लिखित सुल्वसूत्रा थी। सुल्वसूत्रा में ‘पाई’ और पाइथागोरस प्रमेय के समान कुछ अवधारणाओं का भी उल्लेख है। पाई का उपयोग वर्तमान में वृत्त के क्षेत्राफल और परिधि की गणना करने के लिए किया जाता है।
अपस्तम्ब ने द्वितीय शताब्दी ईसा पूर्व में व्यावहारिक रेखागणित की अवधारणाओं को प्रस्तुत किया जिनमें न्यूनकोण, अधिककोण और समकोण का भी उल्लेख मिलता है। कोणों के इस ज्ञान से उन दिनों अग्नि वेदियों के निर्माण में सहायता मिलती थी।
आर्यभट्ट
आर्यभट्ट ने प्रायः 499 इसवी में आर्यभट्टीयम् की रचना की, जिसमें गणित के साथ-साथ खगोल शास्त्र की अवधारणाओं का स्पष्ट उल्लेख किया गया था। इस पुस्तक के चार खंड हैंः
1. अक्षरों द्वारा बड़ी दशमलव संख्याओं को दर्शाने की विधि
2. संख्या सिद्धांत, रेखा गणित, त्रिकोणमिति, और बीज गणित
3. एवं 4. खगोल शास्त्र पर
खगोल शास्त्र को अंग्रेजी में एस्ट्रोनाॅमी कहा जाता है। खगोल नालन्दा में स्थित प्रसिद्ध खगोलीय प्रयोगशाला का नाम था जहाँ आर्यभट्ट ने अध्ययन किया था।
आर्यभट्ट ने अपनी पुस्तक में, खगोल शास्त्र अध्ययन के निम्नलिखित लक्ष्य बताए हैंः
ऽ पंचांग की सटीकता का पता लगाना।
ऽ जलवायु और वर्षा के स्वरूपों के बारे में जानना।
ऽ नौपरिवहन।
ऽ जन्म कुंडली देखना।
ऽ ज्वार-भाटा और नक्षत्रों के बारे में ज्ञान प्राप्त करना। इससे मरुस्थलों और समुद्रों को पार करने में और इस तरह रात के समय दिशा को दर्शाने में सहायता मिली।
आर्यभट्ट ने अपनी पुस्तक में लिखा था कि पृथ्वी गोल है और वह अपनी धुरी पर घूमती है। उन्होंने एक त्रिभुज के क्षेत्रफल को सूत्र बनाया तथा बीज गणित का आविष्कार किया। आर्यभट्ट द्वारा प्रदान किया गया पाई का मान यूनानियों द्वारा दिए गए मान से ज्यादा परिशुद्ध है।
आर्यभट्टीयम् के ज्योतिष वाले भाग में खगोल शास्त्र की परिभाषा, ग्रहों की सही स्थिति का पता लगाने की विधि, सूर्य एवं चन्द्रमा की गति और ग्रहणों की गणना का भी वर्णन किया है। उनके पुस्तक में, ग्रहण का जो कारण बताया गया है वह यह है कि जब अपनी धुरी पर घूमते समय पृथ्वी की छाया चन्द्रमा पर पड़ती है तब चन्द्र ग्रहण होता है, और जब चन्द्रमा की छाया पृथ्वी पर पड़ती है तब सूर्य ग्रहण होता है। हालाँकि, रूढ़िवादी सिद्धांतों में पहले इस बात का उल्लेख था कि यह एक ऐसी प्रक्रिया है जहाँ राक्षस ग्रह को निगल लेता है। इस प्रकार, हम कह सकते हैं कि आर्यभट्ट के सिद्धांत, रूढिवादी के ज्योतिष शास्त्रा सम्बन्धी सिद्धांतों से बिल्कुल भिन्न थे और ये सिद्धांत आस्थाओं की बजाय वैज्ञानिक व्याख्या पर आधारित थे।
यह ध्यान देने योग्य है कि अरब लोग गणित को ‘हिंदीसत’ या भारतीय कला कहते थे जिसे उन्होंने भारत से सीखा था। इस मामले में सम्पूर्ण पश्चिमी विश्व, भारत का ऋणी है।
ब्रह्मगुप्त
ब्रह्मगुप्त ने 7वीं शताब्दी ईसा पूर्व में अपनी पुस्तक ब्रह्मस्पूत सिद्धांतिका में शून्य का उल्लेख पहली बार एक संख्या के रूप में किया। अपनी पुस्तक में, उन्होंने ऋणात्मक संख्याओं का भी सूत्रापात किया और ट्टणात्मक संख्याओं का वर्णन ऋण के रूप में और धनात्मक संख्याओं का वर्णन लाभ के रूप में किया।
शून्य की अवधारणा
‘जीरो’ या शून्य को एक शून्यता की अवधारणा से लिया गया है। शून्यता की अवधारणा हिन्दू दर्शन शास्त्र में अस्तित्व में थी अतः यह उसकी प्रतीकात्मक व्युप्ति को दर्शाता है। शून्य की अवधारणा ने निर्वाण (अनंतकालीन शून्यता में विलीन करके मोक्ष प्राप्त करना) की बौद्धिक अवधारणा के माध्यम से दक्षिण-पूर्वी संस्कृति को प्रभावित किया है।
9वीं शताब्दी ईसा पश्चात् में, महावीराचार्य ने गणित सार संग्रह की रचना की, जो वर्तमान कालीन अंक गणित पर आधारित प्रथम पाठ्यपुस्तक है। अपनी पुस्तक में, उन्होंने न्यूनतम उभयनिष्ठ अपवत्र्य संख्या ज्ञात करने की वर्तमान विधि का विस्तारपूर्वक वर्णन किया। इस प्रकार वर्तमान विधि का वास्तविक रूप जाॅन नेपियर का नहीं बल्कि महावीराचार्य का आविष्कार था।
Recent Posts
सती रासो किसकी रचना है , sati raso ke rachnakar kaun hai in hindi , सती रासो के लेखक कौन है
सती रासो के लेखक कौन है सती रासो किसकी रचना है , sati raso ke…
मारवाड़ रा परगना री विगत किसकी रचना है , marwar ra pargana ri vigat ke lekhak kaun the
marwar ra pargana ri vigat ke lekhak kaun the मारवाड़ रा परगना री विगत किसकी…
राजस्थान के इतिहास के पुरातात्विक स्रोतों की विवेचना कीजिए sources of rajasthan history in hindi
sources of rajasthan history in hindi राजस्थान के इतिहास के पुरातात्विक स्रोतों की विवेचना कीजिए…
गुर्जरात्रा प्रदेश राजस्थान कौनसा है , किसे कहते है ? gurjaratra pradesh in rajasthan in hindi
gurjaratra pradesh in rajasthan in hindi गुर्जरात्रा प्रदेश राजस्थान कौनसा है , किसे कहते है…
Weston Standard Cell in hindi वेस्टन मानक सेल क्या है इससे सेल विभव (वि.वा.बल) का मापन
वेस्टन मानक सेल क्या है इससे सेल विभव (वि.वा.बल) का मापन Weston Standard Cell in…
polity notes pdf in hindi for upsc prelims and mains exam , SSC , RAS political science hindi medium handwritten
get all types and chapters polity notes pdf in hindi for upsc , SSC ,…