हिंदी माध्यम नोट्स
गैलेक्सी का आकार क्या है , Shape of galaxy in hindi ग्रहीय तथा उपग्रहीय गति (Planetary and Satellite Motion)
ग्रहीय तथा उपग्रहीय गति (Planetary and Satellite Motion) गैलेक्सी का आकार क्या है , Shape of galaxy in hindi ?
कोणीय संवेग के संरक्षण का नियम (Law of Conservation of Angular Momentum)
किसी कण पर कार्य करने वाले बाह्य बल-आघूर्ण का मान होता है,
T = dj/dt = r x F ……………………(1)
यदि बाह्य बल-आघूर्ण का मान शून्य हो, अर्थात् T = 0 है तो
Dj/dt = 0
J = स्थिरांक …………………………………(2)
अतः बाह्य बल-आघूर्ण की अनुपस्थिति में कण का कोणीय संवेग नियत या संरक्षित रहता है। इसे कोणीय संवेग के संरक्षण का नियम कहते हैं।
किसी कण तंत्र पर कार्य करने वाले कुल बल-आघूर्ण का मान होता है,
T = t बाह्य = dj/dt = d/dt Σ ji = Σ ri x FI बाह्य ………………………..(3)
‘यदि कण तंत्र पर कार्य करने वाले कुल बाह्य बल-आघूर्ण का मान शून्य हो अर्थात् T बाह्य = 0 हो तो
Dj/dt = d/dt Σ j1 = 0
या J = J1+ J2, + J3. ……………….= स्थिरांक ………………..(4)
अर्थात यदि किसी कण तंत्र पर लगने वाले परिणामी बाह्य बल-आघूर्ण का मान शून्य हो तो उस कण तंत्र के कुल कोणीय संवेग का मान नियत या संरक्षित रहता है।
कोणीय संवेग के संरक्षण के नियम में यह माना गया है कि (i) कण तंत्र के कण युग्मों के अन्योन्य आन्तरिक बल कणों को जोड़ने वाली रेखा की दिशा में ही होते हैं।
(ii) यदि निकाय के किसी भाग में कोणीय संवेग में कुछ परिवर्तन होता है तो निकाय के शेष भाग में कोणीय संवेग में परिवर्तन बराबर एवं विपरीत दिशा में होगा जिससे संपूर्ण निकाय का कोणीय संवेग नियत रहे।
कोणीय संवेग के संरक्षण के उदाहरण (Examples of Conservation of Angular Momentum)
भारी नाभिक द्वारा आवेशित कण का प्रकीर्णन : प्रोटोन या अल्फा कणों का भारी नाभिक द्वारा प्रकीर्णन-(Scattering of charged particles by a heavy nucleus : scattering of protons or a-particles by a heavy nucleus)-माना कोई q आवेश का एक धनात्मक आवेशित कण जिसका द्रव्यमान m है, + Ze आवेश वाले नाभिक N की ओर गति कर रहा है। यहां Z नाभिक की परमाण संख्या (atomic number) है। चूंकि गतिमान कण धनावेशित है अतः नाभिक तथा कण के बीच प्रतिकर्षी कुलामीय बल कार्य करेगा जिसकी दिशा हमेशा नाभिक से कण की ओर होगी। कार्यरत बल का मान केवल दूरी पर निर्भर होता है। इसलिए यह बल एक केन्द्रीय बल (central force) होगा। इस बल के प्रभाव में गतिमान आवेशित कण का प्रपथ (trajectory) अतिपरवलय (hyperbola) होगा जैसा कि निम्न चित्र में प्रदर्शित किया गया है। कण की प्रारम्भिक गति की दिशा पर नाभिक N की स्थिति से डाले गये लम्ब की दूरी ‘b’ को संघात पैरामीटर (impact parameter) कहते हैं।
माना गतिमान आवेशित कण प्रोटोन या अल्फा कण है तथा जब आपाशा पण जरा पूरा परह तो उस समय उसका V0 वेग है। इस स्थिति में नाभिक के सापेक्ष (जिसे स्थिर माना गया है) आवेशित कण का आवेशित संवेग mv0b तथा उसकी प्रारम्भिक गतिज ऊर्जा 1/2 = m vo2 होगी। जैसे-जैसे कण गति करता हुआ नाभिक के पास आता जायेगा उसकी गति की दिशा तथा वेग का परिमाण परिवर्तित होते जायेंगे। गतिमान आवेशित कण गति करता हुआ नाभिक के पास जिस निकटतम दूरी तक पहुँच पाता है उसे निकटतम पहुँच की दूरी (distance of closest approach) कहते ह। उपयुक्त चित्र म इस S से प्रदर्शित किया गया है। माना निकटतम पहुँच की दूरी की स्थिति O पर कण का वेग v0 है तो उस स्थिति में कण का कोणीय संवेग m vC S तथा गतिज ऊर्जा ½ mvo2 होगी।
कोणीय संवेग के संरक्षण के नियम से ।
mvo2 = mvC.s
क्योंकि नाभिक व आवेशित कण के निकाय पर कोई बाह्य बल कार्य नहीं कर रहा।
अतः VC = V0b/S ………………………………….(2)
प्रारम्भ में जब कण नाभिक से यथेष्ट दूरी अर्थात् अनन्त पर होगा तो उसकी कुल ऊर्जा केवल गतिज ऊर्जा होगी अर्थात् ½ mv02 होगी। लेकिन जब कण गति करता हुआ नाभिक के निकट आता है तो उसमें गतिज ऊर्जा तथा स्थितिज ऊर्जा दोनों ही ऊजाये होती है तथा उसकी कल कर्जा गनिज कर्जा तथा स्थितिज ऊर्जा के योग के बराबर होती है अथात् नाभिक के निकटतम स्थिति में कण की
कुल ऊर्जा = स्थितिज ऊर्जा + गतिज ऊर्जा
= K Zeq/S + ½ m vc2
ऊर्जा संरक्षण के नियम से |
½ m v02 = K Zeq/S + ½ m VC2
यहाँ K = ¼ π0 = 9 x 109 न्यूटन-मी2./कूलॉम2
समीकरण (2) से vc का मान समीकरण (3) में रखने पर
½ m v02 = K Zeq/S + ½ m v02b2/S2
K Zeq/S = ½ m v02 (1 – b2/S2)
यदि आवेशित कण प्रोटोन हो तो, m = mP = 1.67 X 10-27 किग्रा
तथा q = qp + e = +1.6 x 1019 कूलॉम
यदि आवेशित कण अल्फा कण (a) हो तो,
M = ma = 4mp = 4 x1.67 x 10-27 = 6.68 x 10-27 किग्रा तथा
Q = qa = +2e =+ 2 x 1.6 x 10-19 = 3.2 x 10-19 कूलॉम
समीकरण (4) से आवेशित कण की भारी नाभिक से निकटतम पहुँच की दूरी ‘S’ का मान ज्ञात कर सकते हैं।
(ii) गैलेक्सी का आकार (Shape of galaxy)
तारों की बहुत बड़ी संख्या (1012) के समूह को एक गैलेक्सी कहते हैं। इसमें बहुत अधिक मात्रा में स्वतंत्र गैस पायी जाती है। हमारे ब्रह्माण्ड में बहुत-सी गैलेक्सियां हैं। एक गैलेक्सी से दूसरी गैलेक्सी के बीच की दूरी बहुत अधिक होती है। गैलेक्सी का आकार प्रायः गोलाकार न होकर लेन्स (lens) जैसी । आकृति का होता है। आधुनिक मतानुसार गैलेक्सियों का निर्माण गैसों की बहुत अधिक मात्रा में गुरूत्वाकर्षण के कारण संघनन (condensation) क्रिया के द्वारा हआ है।
माना कि प्रारम्भ में गैस के किसी लगभग गोलकार द्रव्यमान का किसी अक्ष के सापेक्ष कोणीय संवेग है कि गरुत्वाकर्षण के प्रभाव में गैस का संघनन होता है अतः गैस के अणुओं में या तारों के बीच अन्योन्य क्रियात्मक या परस्पर क्रिया-प्रतिक्रिया (interaction forces) बल होंगे जिसके फलस्वरूप सम्पूर्ण कोणीय संवेग संरक्षित रहना चाहिये।
अतः वृत्ताकार पथ के लिये, कोणीय संवेग संरक्षित रहने पर।
V0 r0 = v r = k
V = k/r
= v/r = k/r2 …………………….(5)
अतः अपकेन्द्र बल = mv2/r = mk2/r3 ……………………..(6)
स्पष्ट है कि घूर्णन अक्ष से किसी कण के घूमने के पथ की त्रिज्या के कम होने पर अपकेन्द्रीय बल बहुत तेजी से बढ़ता है तथा वह संकुचन को रोकता है। लेकिन गैस घूर्णन अक्ष के समानान्तर या Jके अनुदिश, दिशा में संघनित होने के लिये स्वतंत्र है। इसलिये गैलेक्सी की गैस चपटे (flat) आकार की होती जाती हैं और अन्ततः लैन्स की जैसी आकृति की हो जाती है। इसे चित्र (16) में प्रदर्शित किया गया है।
(ii) ग्रहीय तथा उपग्रहीय गति (Planetary and Satellite Motion)
ग्रह सूर्य के चारों ओर तथा उपग्रह ग्रह के । चारों ओर दीर्घवृत्ताकार कक्षाओं में गति करते हैं।। इनकी गति केप्लर के नियमानुसार होती है। सूर्य तथा ग्रह का द्रव्यमान केन्द्र दीर्घवृत्तीय कक्षा के एक फोकस पर होता है। चूँकि सूर्य अपेक्षाकृत भारी होता है। अतः सूर्य-ग्रह निकाय का द्रव्यमान-केन्द्र सूर्य के केन्द्र के निकट होता है। ग्रह पर कार्यरत गुरुत्वीय बल, सूर्य के केन्द्र की ओर होता है। अतः यह एक केन्द्रीय बल होता है।
इसलिए ग्रह का कोणीय संवेग J = r x p स्थिर रहेगा तथा ग्रह की कक्षा समतल होगी। चित्र (17) मे किसी ग्रह को सूर्य के चारों ओर दीर्घवृत्ताकार पथ पर घूमता हुआ प्रदर्शित किया गया है। जब ग्रह स्थिति सदिश r से स्थिति सदिश r + r में पहुँचता है तो सदिश द्वारा पार किया गया
क्षेत्रफल S = ½ r x r ……………………..(7)
लेकिन d s /dt = lim S/t
D S/ dt = lim ½ r x r/t
= ½ r x d r / dt
= ½ r x v
लेकिन J = M( r x V)
S/dt = ½ J/M …………………………….(9)
यहाँ M ग्रह का द्रव्यमान तथा । उसका कोणीय संवेग है। समीकरण (9) के अनुसार क्योंकि केन्द्रीय बलों बलों के प्रभाव में गति करते हैं ये कोणीय संवेग । नियत रहेगा अतः ग्रहों का क्षेत्रफलीय वेग (d s /dt) भी नियत रहता है जैसी कि केप्लर ने प्रागुक्ति की थी।
Recent Posts
Question Tag Definition in english with examples upsc ssc ias state pcs exames important topic
Question Tag Definition • A question tag is a small question at the end of a…
Translation in english grammer in hindi examples Step of Translation (अनुवाद के चरण)
Translation 1. Step of Translation (अनुवाद के चरण) • मूल वाक्य का पता करना और उसकी…
Report Writing examples in english grammer How to Write Reports explain Exercise
Report Writing • How to Write Reports • Just as no definite rules can be laid down…
Letter writing ,types and their examples in english grammer upsc state pcs class 12 10th
Letter writing • Introduction • Letter writing is an intricate task as it demands meticulous attention, still…
विश्व के महाद्वीप की भौगोलिक विशेषताएँ continents of the world and their countries in hindi features
continents of the world and their countries in hindi features विश्व के महाद्वीप की भौगोलिक…
भारत के वन्य जीव राष्ट्रीय उद्यान list in hin hindi IAS UPSC
भारत के वन्य जीव भारत में जलवायु की दृष्टि से काफी विविधता पाई जाती है,…