JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now

हिंदी माध्यम नोट्स

Categories: 12th maths

स्वतुल्य सम्बन्ध (reflexive relation in hindi) , सममित सम्बन्ध (Symmetric relation) , संक्रमक , तुल्यता

संक्रमक , तुल्यता क्या है स्वतुल्य सम्बन्ध (reflexive relation in hindi) , सममित सम्बन्ध (Symmetric relation) कक्षा 12 वीं उदाहरण , प्रश्न उत्तर परिभाषा किसे कहते है ?

विभिन्न प्रकार के द्विआधारी सम्बन्ध (different types of binary relations in hindi) :

1. स्वतुल्य सम्बन्ध (reflexive relation) : यदि किसी समुच्चय A में कोई सम्बन्ध R इस तरह हो कि A समुच्चय का प्रत्येक अवयव स्वयं से R द्वारा सम्बंधित हो तो R स्वतुल्य सम्बन्ध कहलाता है।

अर्थात प्रत्येक x के लिए xRx , प्रतिक भाषा के रूप में निम्न प्रकार लिखा जाता है –

∀ x ∈ A , xRx

या

∀ x ∈ A , (x ,x) ∈ R

उदाहरण :

1. किसी समतल में स्थित सरल रेखाओं के समुच्चय में सम्बन्ध ‘समान्तर’ स्वतुल्य सम्बन्ध है क्योंकि कोई रेखा स्वयं के भी समान्तर होती है। प्रतिक भाषा के रूप में , xRy यदि x||y स्वतुल्य सम्बन्ध है।

2. सम्बन्ध “बराबर” स्वतुल्य सम्बन्ध है क्योंकि किसी समुच्चय A के प्रत्येक अवयव के लिए x = x अर्थात xRx.

प्रतिक भाषा के रूप में , xRy यदि x = y स्वतुल्य सम्बन्ध है।

3. यदि A , B , C ,  . . . .  उपसमुच्चय है तो ARB , यदि A⊆A सत्य है।

4. धन पूर्णांकों के समुच्चय में xRy यदि x ≤ y स्वतुल्य सम्बन्ध है क्योंकि x ≤ x सत्य है।

5. यदि A = {1,2,3} और R = {(1,1) , (2,2) , (3,3)} स्वतुल्य सम्बन्ध है।

6. धन पूर्णांको के समुच्चय में , xRy यदि x < y स्वतुल्य सम्बन्ध नहीं है।

इसी प्रकार xRy यदि x > y भी स्वतुल्य सम्बन्ध नहीं है।

7. किसी अरिक्त समुच्चय A में समष्टीय सम्बन्ध स्वतुल्य सम्बन्ध होता है।

2. सममित सम्बन्ध (Symmetric relation)

किसी अरिक्त समुच्चय A पर परिभाषित कोई सम्बन्ध R सममित कहलाता है , जबकि प्रत्येक युग्म x , y ∈ A के लिए xRy → yRx
अर्थात (x,y) ∈ R → (y,x) ∈ R
उदाहरण : (1) सम्बन्ध “बराबर” सममित सम्बन्ध है , क्योंकि x = y  → y = x
(2) समतल में स्थित रेखाओं के समुच्चय में सम्बन्ध लम्ब है , सममित सम्बन्ध है क्योंकि x ⊥ y → y ⊥ x
यहाँ ⊥ , लम्ब का प्रतिक है।
(3) धन पूर्णांको के समुच्चय में xRy यदि x + y = 10 , युग्म x , y ∈ N एक सममित सम्बन्ध है , क्योंकि x + y = 10  → y + x = 10
अर्थात (x , y) ∈ R → (y,x) ∈ R
(4) यदि A = {2 , 4 , 6 , 8} तो
R1 = {(2,4) , (4,2) , (4,6) , (6,4) , (2,8) , (8,2)}
सममित सम्बन्ध है क्योंकि
(2,4) ∈ R1 → (4,2) ∈ R1
(4,6) ∈ R1 → (6 , 4) ∈ R1
(2,8) ∈ R1 → (8,2) ∈ R1
R2 = {(2, 4) , (4,2) , (4,6) , (2,8) , (8,2)} सममित  नहीं है क्योंकि
(4,6) ∈ R2 → (6, 2) ∉ R2

3. प्रतिसममित सम्बन्ध (Antisymmetric relation)

यदि किसी अरिक्त समुच्चय A में कोई सम्बन्ध R इस प्रकार हो कि x , y ∈ A के लिए
xRy और yRx → x = y
अर्थात xRy और yRx तभी सत्य होगा जब x = y होगा , तब R प्रतिसममित सम्बन्ध कहलाता है।
उदाहरण :
(1) उपसमुच्चयों के समुच्चय में सम्बन्ध ⊆ प्रतिसममित सम्बन्ध है क्योंकि A ⊆ B , B⊆A → A = B
(2) पूर्णांकों के समुच्चय में सबंध > प्रतिसममित सम्बन्ध है क्योंकि x > y , y > x → x = y
(3) प्राकृतिक संख्याओं के समुच्चय में a भाजक है , b प्रतिसममित सम्बन्ध है क्योंकि aRb , bRa → a= b
(4)किसी अरिक्त समुच्चय A में तत्समक सम्बन्ध प्रतिसममित सम्बन्ध होता है।

4. संक्रमक सम्बन्ध (Transitive relation)

किसी अरिक्त समुच्चय A में सम्बन्ध R इस प्रकार परिभाषित हो कि किन्ही x , y , z ∈ A के लिए
xRy , yRz  → xRz
अर्थात (x,y) ∈ R,(y,z) ∈ R → (x,z) ∈ R
तो R संक्रमक सम्बन्ध कहलाता है।
उदाहरण :
(1) xRy यदि x= y तो R संक्रमक सम्बन्ध है।
(2) xRy यदि x > y तो R संक्रमक सम्बन्ध है।
(3) ARB यदि A ⊆ B तो R संक्रमक सम्बन्ध है।
(4) xRy यदि x ⊥ y तो R संक्रमक नहीं है।
(5) A = {1 , 2 , 3} और R = {(1,2) , (1,3) , (2,3)} तो R संक्रमक है क्योंकि (1,2) ∈ R , (2,3) ∈ R → (1,3) ∈ R
(6) किसी समतल में सरल रेखाओं के बीच सम्बन्ध समान्तर है , संक्रमक सम्बन्ध है क्योंकि किन्ही तीन रेखाओ x , y , z के लिए ,
xRy , yRz → xRz
अर्थात x||y , y || z → x||z
(7) समतल में स्थित त्रिभुजों के मध्य सम्बन्ध सर्वांगसम सम्बन्ध , संक्रमक सम्बन्ध है।
प्रमेय : यदि किसी समुच्चय A में R एक सम्बन्ध है तो सिद्ध कीजिये कि –
(i) R स्वतुल्य → R-1 स्वतुल्य
(ii) R सममित → R-1 सममित
(iii) R संक्रमक → R-1 संक्रमक
उत्पत्ति :
(i) ∀ a ∈ A , (a,a) ∈ R,R स्वतुल्य है।
अब (a,a) ∈ R → (a,a) ∈ R-1
अत: ∀ a ∈ A , (a,a) ∈ R-1
अत: R-1 स्वतुल्य है।
(ii) (a,b) ∈ R-1 →  (b,a) ∈ R
परन्तु R सममित है।
अत: (b,a) ∈ R → (a,b) ∈ R
(b,a) ∈  R-1
अत: (a,b) ∈  R-1 → (b,a) ∈  R-1
अत:  R-1 सममित है।
(iii) माना (a,b) तथा (b,c) ∈  R-1 तब (b,a) ∈  R और (c,b) ∈ R , परन्तु R संक्रमक है अत:
(c,b) ∈ R , (b,a) ∈ R → (c,a) ∈ R → (a,c) ∈  R-1
इस R संक्रमक है।

5. तुल्यता सम्बन्ध (Equivalence relation)

किसी अरिक्त समुच्चय A में कोई सम्बन्ध R तुल्यता सम्बन्ध कहलाता है , यदि सम्बन्ध R स्वतुल्य , सममित और संक्रमक हो अर्थात
(i) सभी x ∈ A के लिए xRx (स्वतुल्य)
(ii) x,y ∈ A के लिए xRy → yRx (सममित)
(iii) x,y,z  ∈ A के लिए xRy , yRz → xRz (संक्रमक)
तुल्यता सम्बन्ध का प्राय: ” ~ “से निरुपित किया जाता है।
अत: समुच्चय A में “~” तुल्यता सम्बन्ध होगा यदि –
(i) x ~ x , ∀ x  ∈ A
(ii) x  ~ y  → y ~ x ; x , y ∈ A
(iii) x ~ y एवं y ~ z → x ~ z ; x , y , z  ∈ A
Sbistudy

Recent Posts

मालकाना का युद्ध malkhana ka yudh kab hua tha in hindi

malkhana ka yudh kab hua tha in hindi मालकाना का युद्ध ? मालकाना के युद्ध…

4 weeks ago

कान्हड़देव तथा अलाउद्दीन खिलजी के संबंधों पर प्रकाश डालिए

राणा रतन सिंह चित्तौड़ ( 1302 ई. - 1303 ) राजस्थान के इतिहास में गुहिलवंशी…

4 weeks ago

हम्मीर देव चौहान का इतिहास क्या है ? hammir dev chauhan history in hindi explained

hammir dev chauhan history in hindi explained हम्मीर देव चौहान का इतिहास क्या है ?…

4 weeks ago

तराइन का प्रथम युद्ध कब और किसके बीच हुआ द्वितीय युद्ध Tarain battle in hindi first and second

Tarain battle in hindi first and second तराइन का प्रथम युद्ध कब और किसके बीच…

4 weeks ago

चौहानों की उत्पत्ति कैसे हुई थी ? chahamana dynasty ki utpatti kahan se hui in hindi

chahamana dynasty ki utpatti kahan se hui in hindi चौहानों की उत्पत्ति कैसे हुई थी…

1 month ago

भारत पर पहला तुर्क आक्रमण किसने किया कब हुआ first turk invaders who attacked india in hindi

first turk invaders who attacked india in hindi भारत पर पहला तुर्क आक्रमण किसने किया…

1 month ago
All Rights ReservedView Non-AMP Version
X

Headline

You can control the ways in which we improve and personalize your experience. Please choose whether you wish to allow the following:

Privacy Settings
JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now