JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now

हिंदी माध्यम नोट्स

Categories: physics

Precessional motion in Hindi of a Spinning Top | चक्रण करते लटू की पुरस्सरण गति घूर्णाक्षस्थापी गति gyroscopic motion

जानों कि Precessional motion in Hindi of a Spinning Top | चक्रण करते लटू की पुरस्सरण गति घूर्णाक्षस्थापी गति gyroscopic motion in hindi ?

चक्रण करते लटू की पुरस्सरण गति (Precessional Motion of a Spinning Top)
व्यावहारिक प्रेक्षण के आधार पर यह ज्ञात है कि चक्रण करता हुआ लटट अपने कीलक-बिन्द (needle-point) पर खड़ा रह सकता है जबकि चक्रण नहीं करने वाला लटू (non-spinning top) नीचे

गिर जाता है। इसके अतिरिक्त यह भी देखा जा सकता है कि चक्रण करता हुआ लटू न केवल अपनी सममित घूर्णन अक्ष के सापेक्ष चक्रण करता है वरन् कीलक बिन्दु से पारित एक आकाशीय ऊर्ध्वाधर अक्ष के सापेक्ष पुरस्सरण गति (precessional motion) भी करता है। (किसी घूर्णन करते हुए पिण्ड की घूर्णी-अक्ष का किसी अन्य नियत अक्ष के प्रति घूर्णन पुरस्सरण कहलाता है।) चक्रण करते हुए लट्ट की इस गति को समझने का प्रयास हम यहाँ करेंगे । चक्रण करते हुए लटू पर लगने वाला मात्र बाह्य बल गुरुत्वीय बल है। चक्रण करते हुए पिण्ड की गति को घूर्णाक्षस्थापी गति (gyroscopic motion) भी कहते हैं।

चित्र (21) में लटू की अपनी स्वयं की सममिति अक्ष के सापेक्ष w कोणीय वेग से चक्रण करते हुए . प्रदर्शित किया गया है। लटू का स्थिर बिंदु O, जड़त्वीय निर्देश तंत्र के मूल बिंदु पर है। किसी भी क्षण, इसके कोणीय संवेग सदिश J को घूर्णन अक्ष के अनुदिश (ऊपर की ओर इंगित करते हुए) दिखाया गया है। यहाँ घूर्णन अक्ष Z-अक्ष से θ कोण पर झुकाव लिए हुए है।
अब यदि घूर्णन करते हुए पिण्ड पर कोई ऐसा बल आघूर्ण आरोपित करें जिसकी दिशा, पिण्ड की घूर्णन अक्ष (या J की दिशा) के लम्बवत् हो, तब पिण्ड के घूमने की दर तो नियत (constant) बनी रहती है परत घूर्णन अक्ष की दिशा निरंतर बदलती रहेगी। परिणामस्वरूप घूर्णन अक्ष स्वयं घूमने लग जाती है। घुर्णन अक्ष के इस प्रकार Z-अक्ष के चारों ओर घूमने को ही पुरस्सरण गति (precessional motion) कहा जाता है। माना लटू का द्रव्यमान केन्द्र G है जिसका मूल बिन्दु के सापेक्ष स्थिति r सदिश है। लठ्ठ पर दो बल कार्य करते हैं। एक उसके द्रव्यमान केन्द्र G पर उसका भार mg नीचे की ओर तथा दूसरा प्रतिक्रिया बल उसके कीलक बिन्दु O पर ऊपर की ओर लगता है। इस बल से कोई आघूर्ण नहीं लगता क्योंकि आघूर्ण भुजा शून्य होगी जबकि mg के कारण O के प्रति बल आघूर्ण कार्य करेगा। भार mg और द्रव्यमान केन्द्र स्थिति सदिश r के सदिश गुणनफल से बल आघूर्ण τ प्राप्त होता है। अतः बिन्दु 0 के प्रति भार (बल) का आघूर्ण

τ = r x mg जिससे |τ| =r mg sin (180°–θ)=rmg sinθ ……(1) इस बल आघूर्ण की दिशा r व mg के लम्बवत् होगी। जिस तल में r व mg दोनों सदिश स्थित हैं उसी तल में कोणीय संवेग सदिश J भी स्थित होगा। अतएव बल आघूर्ण τ कोणीय संवेग J के भी लम्बवत् होगा और इसके प्रभावस्वरूप लटू पुरस्सरण गति करेगा। वास्तव में यह बल आघूर्ण τ , लटू के कोणीय संवेग j की दिशा में परिवर्तन लाता है (कोणीय संवेग J का परिमाण परिवर्तित नहीं होता है) चित्र (21 b) के अनुसार बल आघूर्ण τ , लटू के कोणीय संवेग J को परिवर्तित करता है। यदि किसी समयान्तराल dj में लटू के कोणीय संवेग में परिवर्तन dj हो तो बल आघूर्ण
τ = dJ/dt ……(2)

यहाँ कोणीय संवेग में परिवर्तन dJ , लटू पर लगने वाले बल आघूर्ण τ है के समान्तर होगा। अतः dj की दिशा की j दिशा के लम्बवत् होगी और समयान्तरल dt के पश्चात् निकाय का कोणीय संवेग, पूर्व कोणीय संवेग J तथा परिवर्तन dj के योग के तुल्य होगा, चित्र (21 b)।
J के परिमाण में कोई परिवर्तन नहीं होता केवल परिणामी कोणीय संवेग की दिशा बदल जाती है। अतः कोणीय संवेग सदिश j का सिरा (tip) क्षैतिज तल में एक वृत्त का अनुरेखण (trace) करता है तथा कोणीय संवेग J की दिशा, लटू की घूर्णन अक्ष के सम्पाती रहती है। अतः लटू की घूर्णन अक्ष स्वतः ही सममिति अक्ष अर्थात् Z-अक्ष के प्रति घूर्णन करती है और एक शंकु के आकार (cone shaped) की आकृति को प्रसर्पित करती है जिसका शीर्ष (vertex) स्थिर बिन्दु 0 पर रहता है। पुरस्सरण की दर
चित्र (21 b) के अनुसार क्षैतिज तल में सदिश का सिरा त्रिज्या (J sin ) का वृत्त बनाता है। यदि dt समय में समय में वृत्त का त्रिज्य सदिश कोण dΦ से घूम जाता है, तो
को
या
dΦ = |dJ|/jsinθ
अतः पुरस्सरण गति का कोणीय वेग

wp = mgr/J
इस प्रकार पुरस्सरण की दर (rate of precession) चक्रण करने वाले लट्टू के कोणीय संवेग के व्युत्क्रमानुपाती होती है। इसी कारण से जैसे-जैसे चक्रण कर रहे लटू के वेग घर्षण आदि से मन्दित होता जाता है , वैसे वैसे इसका कोणीय संवेग घटता है तथा इसका पुर्स्सरण उतना ही तीव्र होता जाता है | पुरस्सरण वेग wp की दिशा Z अक्ष के अनुदिश होती है |

τ = wp J sinθ

τ = wp x J

जहाँ θ पुरस्सरण वेग wp (Z अक्ष) और कोणीय संवेग J अर्थात w की दिशा के मध्य कोण है |

Sbistudy

Recent Posts

सती रासो किसकी रचना है , sati raso ke rachnakar kaun hai in hindi , सती रासो के लेखक कौन है

सती रासो के लेखक कौन है सती रासो किसकी रचना है , sati raso ke…

14 hours ago

मारवाड़ रा परगना री विगत किसकी रचना है , marwar ra pargana ri vigat ke lekhak kaun the

marwar ra pargana ri vigat ke lekhak kaun the मारवाड़ रा परगना री विगत किसकी…

14 hours ago

राजस्थान के इतिहास के पुरातात्विक स्रोतों की विवेचना कीजिए sources of rajasthan history in hindi

sources of rajasthan history in hindi राजस्थान के इतिहास के पुरातात्विक स्रोतों की विवेचना कीजिए…

2 days ago

गुर्जरात्रा प्रदेश राजस्थान कौनसा है , किसे कहते है ? gurjaratra pradesh in rajasthan in hindi

gurjaratra pradesh in rajasthan in hindi गुर्जरात्रा प्रदेश राजस्थान कौनसा है , किसे कहते है…

2 days ago

Weston Standard Cell in hindi वेस्टन मानक सेल क्या है इससे सेल विभव (वि.वा.बल) का मापन

वेस्टन मानक सेल क्या है इससे सेल विभव (वि.वा.बल) का मापन Weston Standard Cell in…

3 months ago

polity notes pdf in hindi for upsc prelims and mains exam , SSC , RAS political science hindi medium handwritten

get all types and chapters polity notes pdf in hindi for upsc , SSC ,…

3 months ago
All Rights ReservedView Non-AMP Version
X

Headline

You can control the ways in which we improve and personalize your experience. Please choose whether you wish to allow the following:

Privacy Settings
JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now