JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now

हिंदी माध्यम नोट्स

Planck Distribution Law in hindi प्लांक वितरण नियम क्या है सूत्र लिखिए फर्मी डिरैक सांख्यिकी (Fermi Dirac Statistics)

जानिये Planck Distribution Law in hindi प्लांक वितरण नियम क्या है सूत्र लिखिए फर्मी डिरैक सांख्यिकी (Fermi Dirac Statistics) ?

प्लांक वितरण नियम (Planck Distribution Law)

बोस-आइन्सटाइन सांख्यिकी के महत्वपूर्ण अनुप्रयोगों में सबसे प्रमुख कृष्णिका विकिरण में ऊर्जा वितरण की व्याख्या है। इसके लिए एक पिस्टन युक्त निर्वातित बेलनाकार पात्र पर विचार कीजिये जिसकी आन्तरिक दीवारें पूर्णत: परावर्ती हैं और उसमें अत्यल्प बिन्दुवत् द्रव्य (small speck of matter) रखा हुआ है, जिसका पृष्ठ आदर्श रूप से काला है। प्लांक के अनुसार जब विद्युत चुम्बकीय विकिरण द्रव्य से अन्योन्य क्रिया करता है तो वह कण रूप में व्यवहार करता है। अतः बेलनाकार बर्तन के अन्दर विकिरण ऊर्जा एक “गैस” की भांति समझी जा सकती है जिसके कण फोटोन हैं। प्रत्येक फोटोन की ऊर्जा hv व संवेग h/λ होता है। फोटोन की संख्या नियत नहीं होती है क्योंकि बिन्दु द्रव्य (speck of matter) द्वारा फोटोन उत्सर्जित तथा अवशोषित किये जा सकते हैं। अतः हम साम्यावस्था में ऊर्जा वितरण ज्ञात करने के लिए इस प्रतिबन्ध को कि δN = 0, प्रयुक्त नहीं कर सकते हैं, केवल ऊर्जा संरक्षण के संगति प्रतिबन्ध कि δU = 0, रख सकते हैं। इसका परिणाम यह होता है कि फोटोन गैस के लिए α = 0 बोस-आइन्सटाइन बंटन फलन निम्न रूप ग्रहण कर लेता है :

फोटोनों के ऊर्जा स्पेक्ट्रम का विविक्त होते हुए भी सतत की भांति विवेचन किया जा सकता है क्योंकि पात्र (गुहिका) का आकार तरंगदैर्घ्य की तुलना में बहुत बड़ा होता है जिससे अनुमत ऊर्जा स्तरों में अन्तर अत्यल्प होता है। इस अवस्था में gi को g(ε) dε से तथा ni को dn से प्रतिस्थापित कर सकते हैं। अतः फोटोन गैस के लिए

यहाँ g(v) dv आवृत्ति परास dv (जो ऊर्जा परास dε के संगत है) दोलन विधाओं की संख्या है।
अब हम कृष्णिका विकिरण में उन अवस्थाओं की संख्या g(v)dv ज्ञात करते हैं जिनकी आवृत्ति vव v + dv के मध्य है या ऊर्जा ∈ व ε + dε के मध्य है। उपरोक्त संख्या प्रावस्था समष्टि में स्थित निर्देशांकों पर निर्भर नहीं है और फोटोन पात्र के आयतन V में कहीं भी स्थित हो सकता है। यदि फोटोन की ऊर्जा ∈ के संगत संवेग p है तो ऊर्जा ∈ व∈ + d∈ के मध्य होने के लिए संवेग p व p + dp के मध्य होगा । गोलीय सममिति (spherical symmetry) के कारण संवेग समष्टि में संवेग p व p + dp के मध्य अल्पांश त्रिज्या p व मोटाई dp का एक गोलीय कोश होगा । अतः प्रावस्था समष्टि में कोष्ठिका का आयतन

उपर्युक्त सम्बन्ध में 2 का गुणा इस कारण दिया गया है कि विद्युत चुम्बकीय विकिरण अनुप्रस्थ होता है व तरंग गमन की दिशा के लम्बवत् तल में दो स्वतंत्र दिशाओं में उसका ध्रुवण हो सकता है।

p का मान आवृत्ति के रूप में रखने पर

इन dn फोटोनों की ऊर्जा dn (hv) होगी जिससे आवृत्ति v व v + dv के मध्य ऊर्जा घनत्व (ऊर्जा प्रति एकांक आयतन) का मान होगा

यह आवृत्ति के पदों में प्लांक का विकिरण ऊर्जा वितरण का नियम है। इस नियम को तरंगदैर्घ्य λ के पदों में भी व्यक्त कर सकते हैं।

अत: यह ध्यान रखते हुए कि आवृत्ति बढ़ने से तरंगदैर्घ्य घटती है समीकरण ( 8 ) से तरंगदैर्घ्य λ व λ + dλ के मध्य विकिरण ऊर्जा घनत्व

फर्मी डिरैक सांख्यिकी (Fermi Dirac Statistics)

इस सांख्यिकी का पालन उन अभिन्न अविभेद्य कणों के द्वारा किया जाता है जिनकी चक्रण क्वान्टम संख्या अर्ध-विषम पूर्णाकी (half odd integral) होती है। इन कणों के निकाय का अवस्था फलन प्रति सममित (antisymmetric) होता है तथा ये पाउली के अपवर्जन नियम (Pauli’s exclusion principle) द्वारा प्रतिबन्धित होते हैं।

अपवर्जन नियम, जैसा कि वह इलेक्ट्रॉन गैस पर प्रयुक्त होता है, के अनुसार प्रावस्था समष्टि में आयतन h^3 के प्रत्येक कक्ष में दो से अधिक कला बिन्दु नहीं हो सकते। यही सिद्धान्त एक परमाणु में इलेक्ट्रॉनों की व्यवस्था नियंत्रित है, अर्थात् एक ही परमाणु में किन्हीं दो इलेक्ट्रॉनों की क्वान्टम संख्याओं का समान समुच्चय नहीं हो सकता। निर्देशाकाश में एक कक्ष के निर्देशांक क्वान्टम संख्याओं के संगत होते हैं। एक कक्ष में दो बिन्दुओं के होने का कारण यह है कि इलेक्ट्रॉनों में, जिनको ये बिन्दु निरूपित करते हैं, विपरीत चक्रण (spin) में होते हैं। अतएव एक कोष्ठिका में निरूपक बिन्दुओं की अधिकतम संख्या कक्षों की संख्या की दुगुनी होती है। अत: मान लीजिए कि प्रत्येक कक्ष को दो उपकक्षों में विभाजित करते हैं और प्रत्येक उपकक्ष में एक बिन्दु से अधिक नहीं हो सकता। अतः यदि ऊर्जा εi वाली कोष्ठिका i में उपकक्षों की संख्या gi है तो

और अपवर्जन नियमानुसार इस कोष्ठिका में बिन्दुओं की अर्थात् क्वान्टम अवस्थाओं की अधिकतम संख्या 8; होगी । पुन: हम एक विशेष उदाहरण के रूप में एक निकाय लेते हैं जिसमें मात्र दो कोष्ठिकाएँ i और j हैं, जिसमें प्रत्येक कोष्ठिका चार उपकक्षों में विभाजित हैं, और एक स्थूल अवस्था ni = 3, nj = 1 पर विचार करते हैं। चित्र ( 7.7-1) में i और j कोष्ठिकाएँ प्रदर्शित की गई हैं और हम देखते हैं कि यदि प्रति उपकक्ष में एक से अधिक बिन्दु नहीं हो j सकते तो कोष्ठिका i में तीन कला बिन्दुओं को व्यवस्थित करने की चार भिन्न रीतियाँ हैं, और कोष्ठिका j में एक बिन्दु को व्यवस्थित करने की चार रीतियाँ हैं। अतः कोष्ठिका i व j के लिए ऊष्मागतिक प्रायिकता है-
Wi = 4, Wj = 4
कोष्ठिका i की प्रत्येक व्यवस्था के लिए हम कोष्ठिका ; की अवस्थाओं में कोई एक व्यवस्था ले सकते हैं, संभाव्य व्यवस्थाओं की कुल संख्या, या स्थूल अवस्था की ऊष्मागतिक प्रायिकता होगी-
W = WiWj = 4 × 4 = 16
अतः
यह समान स्थूल अवस्था के लिए मैक्सवेल – बोल्ट्ज़मान सांख्यिकी के लिए W = 4 और बोस-आइन्स्टाइन सांख्यिकी के लिए W 80 से भिन्न है।
सामान्यतः जब अनेक कोष्ठिकायें हों तो
W = πWi
इस साख्यिकी के लिए किसी Wi के लिए व्यंजक व्युत्पन्न करना बोस-आइन्स्टाइन सांख्यिकी की सापेक्ष अधिक सरल है। एक कोष्ठिका के gi कक्षों में से ni भरे हुए हैं और (gi – ni ) रिक्त हैं। अतः समस्या gi उपकक्षों के दो .. समूहों में विभाजित करने की रीतियों की संख्या की गणना करना है, जिसमें एक समूह में भरे हुए उपकक्ष एवं दूसरे में रिक्त उपकक्ष हों ।

ऊर्जा ∈i की कोष्ठिका में gi अवस्थायें उपलब्ध हैं व इन अवस्थाओं में ni कणों को व्यवस्थित करना है, (ni < gi) । प्रथम कण, gi भिन्न विधियों के द्वारा किसी एक अवस्था में स्थित किया जा सकता है, दूसरे कण के लिए भिन्न विधियों की संख्या (gi – 1 ) होगी, तीसरे के लिए यह संख्या (gi – 2 ) होगी, इत्यादि । इस प्रकार ni कणों को gi अवस्थाओं में रखने की भिन्न विधियों की कुल संख्या होगी

अब चूंकि ni कण अविभेद्य हैं, कणों को आपस में बदलने से कोई अंतर नहीं होगा। अत: ni कणों को gi अवस्थाओं में भिन्न व विभेद्य कुल विधियों की संख्या उपरोक्त कुल विधियों की संख्या को ni! प्राप्त होगी। यदि ऊर्जा ∈i की कोष्ठिका की ऊष्मागतिक प्रायिकता Wi है तो

जो गणना द्वारा प्राप्त परिणाम से सहमति में है । अत: फर्मी-डिराक सांख्यिकी में एक दी हुई स्थूल अवस्था की ऊष्मागतिक प्रायिकता का व्यापक व्यंजक है-

निकाय की ऐन्ट्रॉपी को ऊष्मागतिक प्रायिकता के लॉगेरिथ्म का समानुपाती मानते हैं, और अधिकतम ऐन्ट्रॉपी की साम्यावस्था भी वह होती है जिसके लिए In W अधिकतम होता है या

चूंकि कणों की कुल संख्या और कुल ऊर्जा अपरिवर्ती रहती है । अत: हम निम्न प्रतिबन्ध समीकरण प्राप्त कर सकते हैं :

समीकरण (9) फर्मी – डिरैक वितरण नियम है। अगला कदम राशियाँ ∝ और β का मानांकन हैं। β निर्धारित करने के लिए, हम पुनः ऊष्मागतिक सम्बन्ध का प्रयोग करते हैं कि साम्यावस्था में एक तंत्र के लिए, नियत आयतन के एक प्रक्रम में, जिससे

Sbistudy

Recent Posts

सती रासो किसकी रचना है , sati raso ke rachnakar kaun hai in hindi , सती रासो के लेखक कौन है

सती रासो के लेखक कौन है सती रासो किसकी रचना है , sati raso ke…

17 hours ago

मारवाड़ रा परगना री विगत किसकी रचना है , marwar ra pargana ri vigat ke lekhak kaun the

marwar ra pargana ri vigat ke lekhak kaun the मारवाड़ रा परगना री विगत किसकी…

17 hours ago

राजस्थान के इतिहास के पुरातात्विक स्रोतों की विवेचना कीजिए sources of rajasthan history in hindi

sources of rajasthan history in hindi राजस्थान के इतिहास के पुरातात्विक स्रोतों की विवेचना कीजिए…

2 days ago

गुर्जरात्रा प्रदेश राजस्थान कौनसा है , किसे कहते है ? gurjaratra pradesh in rajasthan in hindi

gurjaratra pradesh in rajasthan in hindi गुर्जरात्रा प्रदेश राजस्थान कौनसा है , किसे कहते है…

2 days ago

Weston Standard Cell in hindi वेस्टन मानक सेल क्या है इससे सेल विभव (वि.वा.बल) का मापन

वेस्टन मानक सेल क्या है इससे सेल विभव (वि.वा.बल) का मापन Weston Standard Cell in…

3 months ago

polity notes pdf in hindi for upsc prelims and mains exam , SSC , RAS political science hindi medium handwritten

get all types and chapters polity notes pdf in hindi for upsc , SSC ,…

3 months ago
All Rights ReservedView Non-AMP Version
X

Headline

You can control the ways in which we improve and personalize your experience. Please choose whether you wish to allow the following:

Privacy Settings
JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now