JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now

हिंदी माध्यम नोट्स

Categories: physics

भौतिक राशियाँ , मूल और व्युत्पन्न राशि क्या है , परिभाषा , प्रकार physical quantities in hindi

(physical quantities in hindi) भौतिक राशियाँ , मूल राशियाँ , व्युत्पन्न राशि की परिभाषा  क्या है , मूल मात्रक , विशेषताएँ :
वे राशियाँ जिनका मापन और तौलन संभव हो अर्थात जिन राशियों को मापना या तौलना संभव हो उन्हें भौतिक राशियाँ कहलाती है।
भौतिक राशि को दो भागों में लिखा जाता है , पहले राशि का संख्यात्मक मान लिखा जाता है और फिर राशि का मात्रक लिखा जाता है।
राशि का संख्यात्मक मान उसकी मात्रा को बताता है तथा मात्रक उसका प्रकार बताती है की राशि किस प्रकार की है अर्थात राशि किस चीज को व्यक्त कर रही है।
उदाहरण – जैसे एक पैकेट में लिखा है 1 Kg , इसका अभिप्राय यह है की इस पैकेट में 1 किलो भार है तथा Kg मात्रक दर्शाता है की इसको भार या द्रव्यमान के रूप में व्यक्त किया जाता है।
भौतिक राशियाँ विभिन्न प्रकार की हो सकती है , जैसे द्रव्यमान , समय , बल , वेग तथा लम्बाई आदि।
भौतिक राशियाँ दो प्रकार की होती है –
1. मूल राशियाँ (fundamental quantities)
2. व्युत्पन्न राशियाँ (derived quantities)

1. मूल राशियाँ (fundamental quantities)

वे भौतिक राशियाँ जो स्वतंत्र होती है तथा अन्य किसी राशि पर निर्भर नहीं होती है मूल राशियाँ कहलाती है।
उदाहरण – द्रव्यमान , लम्बाई तथा समय आदि।

2. व्युत्पन्न राशियाँ (derived quantities)

वे भौतिक राशियाँ जो स्वतंत्र नहीं होती है अर्थात ये आत्म निर्भर नही होती है।  व्युत्पन्न राशियाँ मूल राशियों पर निर्भर करती है। अर्थात इनकी रचना मूल राशियों की सहायता से किया जाता है।
जैसे – बल को व्यक्त करने के लिए निम्न प्रकार लिखा जाता है
बल = द्रव्यमान x त्वरण
हम यहाँ देख सकते है की सभी राशियाँ मूल राशि के रूप है , अत: हमने व्युत्पन्न राशि बल को मूल राशि के रूप में व्यक्त कर दिया या दूसरे शब्दों में कहे तो मूल राशि से ही व्युत्पन्न राशि का निर्माण हुआ है।

भौतिक राशियाँ : वे राशियाँ जिन्हें मापा या तौला जा सकता है उन्हें भौतिक राशियाँ कहते है।

जैसे : लम्बाई , द्रव्यमान आदि।

मूल राशियाँ : वे राशियाँ जिनका मान अन्य राशियों पर निर्भर नहीं करता है , उसे मूल राशियाँ कहते है।

व्युत्पन्न राशियाँ : वे राशियाँ जिनका मान मूल राशियों की सहायता से ज्ञात किया जाता है उसे व्युत्पन्न राशियाँ कहते है। उदाहरण : बल

मूल मात्रक : मूल राशियों को व्यक्त करने के लिए प्रयुक्त मात्रक को मूल मात्रक कहा जाता है।

व्युत्पन्न मात्रक : व्युत्पन्न राशियों को व्यक्त करने के लिए प्रयुक्त मात्रक को व्युत्पन्न मात्रक कहते है।

मानक मात्रक : किसी भौतिक राशि के निश्चित किये गए मान को मानक मात्रक कहते है।

भौतिक राशि का मात्रक उसके आंकिक मान के व्युत्क्रमानुपाती होता है –

U ∝ 1/n

यहाँ n , u = नियतांक

अर्थात

n1u1 = n2u2

1 मीटर = 100 सेंटीमीटर

1 घंटे = 60 मिनट

1 किलोग्राम = 1000 ग्राम

मात्रको की विशेषताएँ :

(i) चयन किये गए मात्रक सर्वमान्य उचित तथा परिमाण के होने चाहिए।

(ii) चयनित मात्रक ताप , दाब व समय में परिवर्तन से प्रभावित नहीं होते है।

(iii) चयनित मात्रको को सरलता से परिभाषित किया जा सकता है।

(iv) वे सभी जगह बिना किसी परेशानी के उत्पन्न किया जा सकता है।

मात्रको की अन्तर्राष्ट्रीय पद्धतियाँ :

पद्धति लम्बाई भार / द्रव्यमान समय
MKS मीटर किलोग्राम सेकंड
CGS सेंटीमीटर ग्राम सेकंड
FPS फुट पाउंडल सेकंड

S.I. पद्धति : यह पद्धति 1960 में अन्तर्राष्ट्रीय माप , तौल समिति द्वारा लागू की गयी। यह MKS पद्धति का परिवर्तित रूप है जिसमे सात मूल मात्रक तथा दो पूरक होते है।

सात मूल मात्रक निम्न है –

द्रव्यमान किलोग्राम Kg
लम्बाई मीटर m
समय सेकंड s
विद्युत धारा एम्पियर A
ताप केल्विन K
ज्योति तीव्रता केंडेला Cd
पदार्थ की मात्रा मोल mol

दो पूरक मूल मात्रक निम्न है –

  1. समतल कोण
  2. ठोस कोण

S.I. पद्धति की विशेषताएँ :

(i) यह मात्रको की पेरिमेयी पद्धति है अर्थात इस पद्धति में एक भौतिक राशि के लिए एक ही मात्रक का उपयोग होता है।

(ii) यह मात्रको सम्बद्ध पद्धति है अर्थात इस पद्धति में सभी भौतिक राशियों के व्युत्पन्न मात्रक केवल मूल मात्रकों को गुणा या भाग करके प्राप्त कर सकते है , सभी गुणा या भाग 10 की घातों में व्यक्त किया जाता है।

(iii) यह एक दशमलव पद्धति है।

(iv) इन्हें आसानी से परिभाषित किया जा सकता है।

S.I पद्धति का 10 की घातों में निरूपण –

101 डेका Ra
102 हेक्टा H
103 किलो K
106 मेगा m
109 गीगा G
1012 टेरा T
1015 पीटा P
1018 हेक्सा E
10-1 डेसी d
10-2 सेंटी c
10-3 मिली m
10-6 माइक्रो H
10-9 नैनो n
10-12 पिको p
10-15 फेंटो F
10-18 ऐटो A

मूल राशियों की अन्तराष्ट्रीय परिभाषाएँ :

1 मीटर : 1 मीटर वह दूरी है जिसमे क्रोमियम से उत्सर्जित नारंगी ,  लाल प्रकाश की 16.50 , 763.63 तरंगे निर्वात में स्थित होती है।

1 किलोग्राम : 1 kg अन्तराष्ट्रीय भार एवं माप संस्थान पेरिस में रखे प्लेटिनम इरिडियम के एक विशेष बेलन के द्रव्यमान के बराबर होता है।

1 सेकंड : एक सेकंड वह समय है जिसमे सीजियम परमाणु के घड़ी में 9,192,631,770 बार कम्पन्न करता है। परमाणु घड़ियाँ इस सिद्धांत पर आधारित होती है कि वे समय के साथ यथार्थ मापन करती है और इसके मान में लगभग 5 हजार वर्षो में 1 सेकंड की त्रुटी उत्पन्न होती है।

1 एम्पियर : एक एम्पियर वह विद्युत धारा है जों निर्वात में एक मीटर की दूरी पर रखे दो सीधे समान्तर अन्नत लम्बाई व नगण्य अनुप्रस्थ काट क्षेत्रफल वाले तार में प्रवाहित होने पर उनके मध्य एकांक लम्बाई पर 2 x 10-7 N/m का बल उत्पन्न होता है।

1 केल्विन : एक केल्विन ताप सामान्य वायुमंडलीय दाब पर जल के क्वथनांक व बर्फ के गलनांक के अंतर का 1/100 वाँ भाग होता है।

केन्डेला : एक केंडेला कृष्णिका के तल के लम्बवत दिशा में ज्योति तीव्रता का 1/60000 वाँ भाग है जबकि कृष्णिका का दाब 10/325  N/m2 तथा ताप प्लेटिनम के गलनांक के बराबर है।

1 मोल : यह पदार्थ की मात्रा को नापने की इकाई होते है जितने की कार्बन-12 के 0.012 किलोग्राम मात्रा में होते है।

एक मोल में 6.023 x 10-23 परमाणु होते है , इसे आवोगाद्रो संख्या कहते है।

पूरक मात्रको की अन्तर्राष्ट्रीय भाषा निम्न है –

1 रेडियन : एक रेडियन समतल कोण का मात्रक है। 1 रेडियन वह तलीय कोण है जो वृत्त की त्रिज्या के बराबर चाप वृत्त के केंद्र पर अंतरित करता है।

समतल कोण dθ = ds/r रेडियन

कोण = चाप/त्रिज्या

1 स्टेरेडियन : यह ठोस कोण का मात्रक होता है। स्टेरेडियन वह ठोस कण है जो उस पृष्ठ के द्वारा किसी ठोस गोले के केंद्र पर बनता है जिसका क्षेत्रफल गोले की त्रिज्या के वर्ग के बराबर होता है।

ठोस कोण = गोले का तल का क्षेत्रफल/त्रिज्या2

लम्बाई का मापन : 10-3 मीटर से 102 मीटर तक की लम्बाइयाँ मीटर पैमाने से ज्ञात की जाती है।

  10-4  मीटर कोटि की लम्बाई वर्नियर कैलीपर्स की सहायता से ज्ञात करते है।

10-5 मीटर कोटि की लम्बाई स्क्रुगेज या स्फेरोमीटर की सहायता से ज्ञात किया जाता है।

बड़ी दूरियों की माप : बहुत अधिक बड़ी दूरियाँ जैसे पृथ्वी की चन्द्रमा से दूरी , पृथ्वी से ग्रहों तथा तारों के मध्य की दूरी ज्ञात करने के लिए लंबन विधि या विस्थापन विधि में लेते है।

लम्बन या विस्थापन विधि : सर्वप्रथम हम एक पेन को अपनी आँख के सामने रखते है , अब इस पेन को पहले दाई आँख बंद करके और फिर बायीं आँख बंद करके देखते है तो हम देखते है कि पृष्ठ भाग के सापेक्ष पेन की स्थिति बदलती है।

पृष्ठ भाग के सापेक्ष पेन की स्थिति में यह परिवर्तन ही विस्थापन का लम्बन कहलाता है।

दोनों प्रेक्षण बिन्दुओ के मध्य की दूरी (स्थिति में बायीं और दाई आँख के मध्य की दूरी) आधार कहलाता है।

इन दोनों स्थितियों से प्रेक्षण दिशाओ के बीच बने कोण को लम्बन कोण कहते है अर्थात आधार द्वारा पिण्ड पर अंतरित कोण लम्बन कोण कहलाता है।

चित्र में AB आधार को तथा θ लम्बन कोण को प्रदर्शित करता है।

लम्बन कोण = चाप की लम्बाई/त्रिज्या

θ = AB/s

θ = b/s

आधार b = s/θ

त्रिज्या s = b/θ

अत: आधार b तथा लम्बन कोण θ का मान ज्ञात होने पर त्रिज्या s की गणना कर सकते है।

आकाशीय पिण्डो की स्थिति : आकाशीय पिण्ड की स्थिति में दूरी S का मान बहुत अधिक होता है तथा आधार या आँख के बीच की दूरी बहुत कम होती है इसलिए लम्बन कोण बहुत छोटा होता है इसलिए आकाशीय पिण्डो की पृथ्वी पर स्थित दो भिन्न भिन्न भेद शालाओ A व B से एक साथ देखा जाता है और लम्बन कोण θ ज्ञात किया जाता है।

चन्द्रमा का व्यास ज्ञात करना : माना पृथ्वी तल पर प्रेक्षण बिंदु o से चन्द्रमा को एक दूरदर्शी द्वारा देखते है तो इसका प्रतिबिम्ब वृत्ताकार चट्टी के रूप में बनता है। व्यास के विपरीत सिरों A व B द्वारा प्रेक्षण बिंदु O पर अंतरित कोण माना θ है।

माना पृथ्वी से चन्द्रमा की माध्य दूरी S हो तो –

भेदशाला A व B

A व B  के मध्य की दूरी D

कोण = चाप/त्रिज्या

θ = AB/S

θ = D/S

D = Sθ

अति सूक्ष्म का मापन (अणु का आकार) : अणुओं का व्यास 10-8 मीटर से 10-10 मीटर कोटि का होता है , इन दूरियों को स्क्रुगेज या स्फेरो मीटर से ज्ञात नहीं कर सकते।

10-7 मीटर कोटि की दूरियों को नापने के लिए प्रकाशीय सूक्ष्मदर्शी को काम में लेते है क्योंकि प्रकाशीय सूक्ष्मदर्शी में दृश्य प्रकाश तरंगो को काम में लिया जाता है जिनकी लम्बाई 4000 A से 7000 A तक होती है इसलिए इसकी सहायता से इससे छोटे आकार वाली दूरियों को ज्ञात नहीं कर सकते।

इससे छोटी दूरियां इलेक्ट्रॉन सूक्ष्मदर्शी की सहायता से ज्ञात करते है , इलेक्ट्रॉन सूक्ष्मदर्शी में प्रकाश पुंज के स्थान पर इलेक्ट्रॉन पुंज का उपयोग किया जाता है।

इसकी सहायता से एक  1 A = 10-10 मीटर कोटि के कणों का आकार ज्ञात किया जा सकता है।

वर्तमान में सुरंगन सूक्ष्मदर्शी का उपयोग इससे भी छोटी दूरियों को मापने में किया जाता है।

आण्विक व्यास का निर्धारण : यह औलिक अम्ल के अणुओं का व्यास मापने की एक व्यवहारिक विधि है , औलिक अम्ल एक द्रव है इसके लिए हम 20 cm3 एल्कोहल में 1cm3 औलिक अम्ल घोलते है। अब हम इस घोल का  1cm3 आयतन लेते है और 20 cm3 एल्कोहल में घोल देते है।

तो घोल की सांद्रता C = 1/20 x 20 = 1/400 cm3

अब हम एक अन्य पात्र में जल लेकर उस पर लाइकोपोडियम पाउडर की एक पतली फिल्म बना देते है और उपरोक्त घोल की कुछ बुँदे इस पतली फिल्म पर डाल देते है।

तो कुछ समय पश्चात् एल्कोहल वाष्प बनकर उड़ जाता है तथा औलिक अम्ल शेष बच जाता है।

माना घोल के प्रत्येक बूंद का आयतन = v cm3

इसलिए n बूंदों का आयतन = nv cm3

घोल में औलिक अम्ल की मात्रा = nv/400 cm3

औलिक अम्ल का यह घोल तेजी से जल के पृष्ठ पर फ़ैल जाता है और t मोटाई की पतली फिल्म बना लेता है।

यदि इस फिल्म का क्षेत्रफल A हो तो –

ओलिक अम्ल का आयतन = At cm3

At  = nv/400

t = nV/400A

A = nV/400t

दूरी परास : ब्रह्माण्ड में प्रोटोन का आकार लगभग सबसे छोटा 10-15 मीटर कोटि का होता है। दृश्यमान विश्व का आकार लगभग 1026 मीटर तक होता है अत: सूक्ष्म अहम वृहद् दूरियों के लिए हम विशेष प्रकार के मात्रको को काम में लेते है।

1A = 10-10 मीटर

1 फर्मी = 10-5 मीटर

खगोलीय मात्रक (Astromical unit ) : सूर्य की केंद्र से पृथ्वी के केंद्र के मध्य की औसत दूरी खगोलीय मात्रक कहलाता है।

1 A.u. = 1.496 x 1011 मीटर

लगभग 1.5 x 1111 मीटर

प्रकाश वर्ष (Light year) : निर्वात में प्रकाश द्वारा तय की गयी दूरी को प्रकाश वर्ष कहते है।

1 प्रकाश वर्ष = 3 x 108 x 60 x 60 x 24 x 365 मीटर

1 प्रकाश वर्ष = 9.46 x 1015 मीटर

लगभग 1016 मीटर

पारसेक : यह दूरी का सबसे बड़ा मात्रक है। खगोलीय मात्रक दूरी को चाप के रूप में लेने पर यदि किसी बिंदु पर 1 सेकंड का कोण अन्तरित होता है प्राप्त दूरी 1 पारसेक कहलाती है।

θ = 1’’

θ = 1sec = 1/3600 डिग्री

θ = π/3600 x 180 रेडियन

कोण = चाप/त्रिज्या

अर्थात  θ = s/r

अत: r = 3.1 x 1016 मीटर

1 पारसेक = 3.1 x 1016 मीटर

द्रव्यमान : द्रव्यमान सभी पदार्थो का मूलभूल गुण है। किसी पदार्थ का द्रव्यमान उसमे निहित पदार्थ की मात्रा है।

इस पर ताप या दाब का कोई प्रभाव नहीं पड़ता है।

MKS तथा SI पद्धति में द्रव्यमान का मात्रक किलोग्राम है। विश्व में द्रव्यमान की परास बहुत अधिक है , इलेक्ट्रॉन का द्रव्यमान लगभग 10-31 किलोग्राम कोटि का होता है। जबकि विश्व का प्रेषित द्रव्यमान 1055 किलोग्राम होता है। द्रव्यमान की छोटी इकाइयों को a.m.u में मापते है।

1 a.m.u (एक परमाण्विक द्रव्यमान मात्रक) = 1.67 x 10-27 किलोग्राम

जबकि द्रव्यमान का सबसे बड़ा मात्रक चन्द्र शेखर इकाई है।

1 चंद्रशेखर इकाई का मान सूर्य के द्रव्यमान का 1.4 गुना होता है।

1 c.s.u = सूर्य के द्रव्यमान x 1.4 गुना

 1 c.s.u = 2.8 x 1030 K.g.

न्यूटन के द्वितीय नियम से किसी भी पिण्ड में उत्पन्न त्वरण उस पिण्ड पर लगने वाले बल के समानुपाती होता है।

F ∝ a

F = ma

यहाँ m समानुपाती नियतांक है जिसे जडत्वीय द्रव्यमान कहते है।

m = F/a

अत: किसी पिण्ड का जडत्वीय द्रव्यमान उस पर लगने वाले बल तथा उसमे उत्पन्न होने वाले त्वरण का अनुपात होता है। दो पिण्डो की द्रव्यमानो की तुलना उन पर लगने वाले गुरुत्वाकर्षण बलों की तुलना से कर सकते है। ये द्रव्यमान गुरुत्वीय द्रव्यमान कहलाते है।

समय का मापन : समय के मापन के लिए घड़ी का प्रयोग किया जाता है। समय किन्ही भी दो घटनाओ के बीच के अंतराल का मापक होता है अथवा यह किसी घटना के पूर्व होने की अवधि को प्रदर्शित करता है।

आइन्स्टाइन के अनुसार घडी द्वारा लिया गया पाठ्यांक ही समय है। प्रकृति में ऐसी कई प्रक्रियाएँ है जैसे पृथ्वी का अपने अक्ष के सापेक्ष ग्रहों का पृथ्वी को चारों ओर परिक्रमण सरल लोलक का दोलन , ह्रदय का धडकना आदि क्रियाएँ एक निश्चित अंतराल के बाद पुनः दोहराई जाती है अत: इसमें से किसी भी घटना की पुनरावर्ती समय को ज्ञात करने के काम आती है।

समय के मात्रक (वर्ष) : सूर्य के चारों ओर पृथ्वी को अपने कक्षा में एक चक्कर पूरा करने में लगा समय एक वर्ष होता है।

ट्रापिकल वर्ष : वह वर्ष जिसमे पूर्ण सूर्य ग्रहण आते है।

लीप वर्ष : वह वर्ष जो 4 से पूर्ण विभाजित हो तथा फरवरी का महिना 29 दिन का हो लिप वर्ष कहलाते है।

चन्द्रमास : पृथ्वी के चारों ओर चन्द्रमा द्वारा अपनी कक्षा में एक चक्कर पूर्ण करने में लगा समय चन्द्रमास कहलाता है।

1 चंद्रमास = 27.3 दिन

शेक : यह समय का बहुत छोटा मात्रक होता है जिसका वर्तमान में उपयोग नहीं किया जा सकता।

Sbistudy

Recent Posts

मालकाना का युद्ध malkhana ka yudh kab hua tha in hindi

malkhana ka yudh kab hua tha in hindi मालकाना का युद्ध ? मालकाना के युद्ध…

4 weeks ago

कान्हड़देव तथा अलाउद्दीन खिलजी के संबंधों पर प्रकाश डालिए

राणा रतन सिंह चित्तौड़ ( 1302 ई. - 1303 ) राजस्थान के इतिहास में गुहिलवंशी…

4 weeks ago

हम्मीर देव चौहान का इतिहास क्या है ? hammir dev chauhan history in hindi explained

hammir dev chauhan history in hindi explained हम्मीर देव चौहान का इतिहास क्या है ?…

1 month ago

तराइन का प्रथम युद्ध कब और किसके बीच हुआ द्वितीय युद्ध Tarain battle in hindi first and second

Tarain battle in hindi first and second तराइन का प्रथम युद्ध कब और किसके बीच…

1 month ago

चौहानों की उत्पत्ति कैसे हुई थी ? chahamana dynasty ki utpatti kahan se hui in hindi

chahamana dynasty ki utpatti kahan se hui in hindi चौहानों की उत्पत्ति कैसे हुई थी…

1 month ago

भारत पर पहला तुर्क आक्रमण किसने किया कब हुआ first turk invaders who attacked india in hindi

first turk invaders who attacked india in hindi भारत पर पहला तुर्क आक्रमण किसने किया…

1 month ago
All Rights ReservedView Non-AMP Version
X

Headline

You can control the ways in which we improve and personalize your experience. Please choose whether you wish to allow the following:

Privacy Settings
JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now