JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now

हिंदी माध्यम नोट्स

Categories: Physics

चुम्बकीय क्षेत्र में आवेश की गति Motion of charge in a Magnetic Field in hindi आवेशित कण की गति

Motion of charge in a Magnetic Field in hindi चुम्बकीय क्षेत्र में आवेश की गति या आवेशित कण की गति : जब कोई गतिशील आवेश q किसी चुम्बकीय क्षेत्र B तथा विद्युत क्षेत्र E में v वेग से प्रवेश या गति करता है तो आवेश q पर दो प्रकार के बल कार्य करते है।

1. चुम्बकीय बल = qvB
2. विद्युत बल = qE
अतः आवेश q पर कुल बल का मान दोनों बलों के योग के बराबर होता है।
अतः कुल बल (F) = चुम्बकीय बल + विद्युत बल
F = qvB + qE
इस बल के बारे में सबसे पहले एच.ए.लोरेन्ज (H. A. Lorentz) ने बताया था इसलिए इसे लॉरेंज बल भी कहते है।
चूंकि हम यहाँ केवल चुम्बकीय बल का अध्ययन कर रहे है अतः आवेश पर लगने वाले चुंबकीय बल के बारे में विशेष अध्ययन करेंगे।
यदि v तथा B के मध्य θ कोण है तो आवेश पर लगने वाला लॉरेंज बल
F = qvB sinθ
यदि हमें चुंबकीय क्षेत्र की दिशा ज्ञात करनी है तो उसके लिए हम पहले कई नियम पढ़ चुके है जैसे दक्षिण हस्त पेच का नियम इत्यादि।
यदि आवेश विराम अवस्था में अर्थात v = 0 होने से बल F = 0 अतः कह सकते है की केवल गतिशील आवेश ही चुंबकीय क्षेत्र उत्पन्न करता है।
अधिक विस्तार से पढ़ने के लिए हम कुछ विशेष स्थितियों का अध्ययन करते है

1. जब आवेशित कण चुम्बकीय क्षेत्र की दिशा में प्रवेश करता है

हम ऊपर पढ़ चुके है की किसी आवेशित कण पर लगने वाला बल
F = qvB sinθ
यदि आवेशित कण की गति चुंबकीय क्षेत्र की दिशा में हो रही है तो V तथा B के मध्य कोण शून्य होगा
अर्थात θ = 0
अतः
sin0 = 0
अतः आवेशित कण पर लगने वाला चुंबकीय बल का मान शून्य होगा। इस स्थिति में आवेशित कण सरल रेखीय पथ पर गति करता है।

2. जब आवेशित कण चुम्बकीय क्षेत्र की दिशा के लम्बवत प्रवेश करता है

इस स्थिति में आवेशित कण चुंबकीय क्षेत्र के लंबवत प्रवेश करता है अर्थात इस स्थिति में V तथा B के मध्य 90 डिग्री का कोण बनता है।
अर्थात
θ = 90
अतः
sin90 = 1
F = qvB sinθ
अतः इस स्थिति में sinθ = 1
अतः F = qvB
चूँकि यह बल आवेशित कण के वेग की दिशा के लम्बवत कार्य करता है अतः इस स्थिति में कण इस बल के कारण वृत्ताकार गति करता है , वृत्ताकार गति के लिए इस कण पर एक अभिकेंद्रीय बल भी कार्य करता है।
वृताकार मार्ग में गति करवाने के लिए यह आवश्यक है की कण पर अभिकेंद्रिय बल तथा चुम्बकीय बल (लॉरेन्ज बल ) का मान समान होना चाहिए।
चूँकि इस स्थिति में आवेशित कण वृत्ताकार गति कर रहा है अतः यहाँ
अभिकेंद्रिय बल  =  चुम्बकीय बल (लॉरेन्ज बल )
अभिकेंद्रिय बल  = mv2/r
चुम्बकीय बल (लॉरेन्ज बल ) = qvB
अतः
mv2/r = qvB
यहाँ r वृत्तीय पथ की त्रिज्या है
चूँकि यहाँ आवेशित कण वृतीय गति कर रहा है अतः कण की कोणीय आवृति (w) को निम्न प्रकार दर्शाया जाता है
चूँकि v = wr
तथा कोणीय आवृति (w) = 2πv
अतः
आवेशित कण को वृत्तीय पथ का एक चक्कर पूरा करने में लगा समय

नोट : अधिक वेग से गति करने वाले आवेशित कण बड़ी त्रिज्या के वृत्तीय पथ का अनुसरण करते है जबकि कम वेग से गति करने वाले आवेशित कण छोटी त्रिज्या के वृत्तीय पथ का अनुसरण करते है।

3. जब आवेशित कण चुम्बकीय क्षेत्र से किसी कोण पर गति करता है

यहाँ किसी कोण पर गति करने का तात्पर्य है की आवेशित कण चुंबकीय क्षेत्र से 0 , 90 या 180 डिग्री के अतिरिक्त अन्य किसी θ कोण पर गति करता है।
इस स्थिति में आवेशित कण कुण्डलिनी मार्ग में गति करता है।
इस स्थिति में  कुण्डलिनी मार्ग में गति कर रहे कुण्डलिनी की त्रिज्या
कुण्डलिनी पथ का आवर्तकाल
चुम्बकीय क्षेत्र में आवेशित कण की गति (motion of a charged particle in a magnetic field) :
(i) जब आवेशित कण चुम्बकीय क्षेत्र की दिशा में प्रवेश करता है – चुम्बकीय क्षेत्र में गतिशील आवेशित कण पर लगने वाला बल –
F = qvBsinθ
जब आवेशित कण की गति चुम्बकीय क्षेत्र की दिशा में होती है तो
θ = 0 अत: sinθ = 0
अत: F = 0
अर्थात चुंबकीय क्षेत्र के समान्तर प्रवेश करने वाले आवेशित कण पर कोई बल नहीं लगता है , अत: कण का पथ ऋजुरेखीय होता है।
(ii) जब आवेशित कण चुम्बकीय क्षेत्र की दिशा के लम्बवत प्रवेश करता है : जब आवेशित कण चुम्बकीय क्षेत्र में क्षेत्र की लम्बवत दिशा में प्रवेश करता है तो
θ = 90 अत: sinθ = 1
अत: F = qvB
इस बल की दिशा हमेशा वेग की दिशा के लम्बवत होगी अत: इस बल के प्रभाव में कण का मार्ग वृत्ताकार होगा क्योंकि वृत्ताकार पथ पर गतिशील पिण्ड पर सदैव वेग की दिशा के लम्बवत एक अभिकेन्द्रीय बल कार्य करता है। अत: यही चुम्बकीय बल (F = qvB) आवश्यक अभिकेन्द्रीय बल का कार्य करेगा तथा कण का मार्ग वृत्ताकार होगा।
चूँकि लोरेन्ज बल = अभिकेन्द्रीय बल
qvB = mv2/r
यहाँ r वृत्तीय पथ की त्रिज्या है।
या
r = mv/qB
स्पष्ट है कि r ∝ mv (संवेग)
और r ∝ 1/q तथा r ∝ 1/B
अर्थात एक समान चुम्बकीय क्षेत्र में आवेशित कण के वृत्ताकार मार्ग की त्रिज्या कण के संवेग (p = mv) के अनुक्रमानुपाती और आवेश (q) और चुम्बकीय क्षेत्र (B) के व्युत्क्रमानुपाती होती है।
चूँकि कण की गतिज ऊर्जा Ek = mv2/2
या
p = √2mEk
अत: मार्ग की त्रिज्या
r = √2mEk/qB
आवर्तकाल और आवृत्ति – वृत्तीय पथ पर कण का आवर्त काल
T = 2πm/qB
आवृत्ति
n = 1/T
n = qB/2πm
समीकरणों से स्पष्ट है कि आवर्तकाल और आवृति , कण की चाल v पर निर्भर नहीं करते है। कण का वेग बढाने पर भी T और n का मान नियत रहता है , केवल मार्ग की त्रिज्या (r) बढ़ जाती है।
अधिक वेग से गति करने वाले आवेशित कण बड़ी त्रिज्या के वृत्तीय पथ पर और कम वेग से गति करने वाले आवेशित कण छोटी त्रिज्या के वृत्तीय पथ पर परिक्रमा करते है।
(ii) जब आवेशित कण चुम्बकीय क्षेत्र से किसी कोण पर गति करता है जो θ = 0 , 90 , 180 के अतिरिक्त हो : चुम्बकीय क्षेत्र में प्रवेश करते समय यदि आवेशित कण का वेग चुम्बकीय क्षेत्र के लम्बवत नहीं है तब कण वृत्तिय पथ में गति न करके कुण्डलिनी मार्ग (helix) के रूप में गति करता है।
वास्तव में जब कण चुम्बकीय क्षेत्र के साथ θ कोण पर प्रवेश करता है तो वेग का घटक v.cosθ चुम्बकीय क्षेत्र के अनुदिश होता है अत: इसके कारण कण का पथ ऋजुरेखीय होगा और लम्ब घटक v.sinθ चुंबकीय क्षेत्र के लम्बवत होगा।
अत: इसके कारण कण का पथ वृत्ताकार होगा। फलस्वरूप दोनों का परिणामी पथ कुंडलिनी पथ होगा। कुण्डलिनी पथ की अक्ष चुम्बकीय क्षेत्र के समान्तर होती है।
इस कुंडलिनी पथ की त्रिज्या
r = mv.sinθ/qB
आवर्तकाल T = 2πm/qB
आवृति n = 1/T
n = qB/2πm
कुण्डलिनी पथ का पिच : कुण्डलिनी पथ के अक्ष के अनुदिश एक आवर्तकाल में चली गयी दूरी को पिच कहते है।
पिच = v.cosθ x T
पिच = v.cosθ x (2πm/qB)

प्रश्न और उत्तर

प्रश्न 1 : 6 x 10-4 T के चुम्बकीय क्षेत्र के लम्बवत 3 x 107 ms-1 की चाल से गतिमान किसी इलेक्ट्रॉन (द्रव्यमान = 9 x 10-31 Kg और आवेश = 1.6 x 10-19 C )  के पथ की त्रिज्या क्या होगी ? इसकी क्या आवृत्ति होगी ? इसकी ऊर्जा keV में परिकलित कीजिये। (1ev = 1.6 x 10-19 J)
उत्तर :
दिया गया है –
चुम्बकीय क्षेत्र B = 6 x 10-4 T
चाल v = 3 x 107 ms-1
द्रव्यमान m = 9 x 10-31 Kg
आवेश = 1.6 x 10-19 C
1ev = 1.6 x 10-19 J
चुम्बकीय क्षेत्र में लम्बवत प्रवेश करने पर इलेक्ट्रॉन के वृत्तीय पथ की त्रिज्या r = 28 सेंटीमीटर
आवृत्ति n = 17 MHz
इलेक्ट्रॉन की गति ऊर्जा = 2.53 keV
प्रश्न 2 : किसी परमाणु में एक इलेक्ट्रॉन नाभिक के चारों तरफ 0.5 x 10-10 m त्रिज्या की वृत्ताकार कक्षा में 5 x 106 ms-1 की एक समान चाल से घूम रहा है। कक्षा के केंद्र पर उत्पन्न चुम्बकीय क्षेत्र की गणना कीजिये।
उत्तर : वृत्तिय पथ में गतिशील आवेश के कारण पथ के केंद्र पर उत्पन्न चुम्बकीय क्षेत्र
B = 32 टेस्ला
प्रश्न 3 : एक α कण 12 Wb m-2 तीव्रता के एक चुम्बकीय क्षेत्र में 0.45 m त्रिज्या के वृत्ताकार मार्ग पर गति करता है।
(i) कण की चाल
(ii) आवर्तकाल
(iii) आवृत्ति की गणना कीजिये (प्रोटोन का द्रव्यमान = 1.67 x 10-27 Kg)
हल : (i) V = 2.58 x 108 ms-1
(ii) आवर्तकाल T = 2πr/v
T = 1.095 x 10-8 second
(iii) कण की आवृत्ति n = 1/T
n = 9.13 x 107 Hz
Sbistudy

Recent Posts

Question Tag Definition in english with examples upsc ssc ias state pcs exames important topic

Question Tag Definition • A question tag is a small question at the end of a…

3 weeks ago

Translation in english grammer in hindi examples Step of Translation (अनुवाद के चरण)

Translation 1. Step of Translation (अनुवाद के चरण) • मूल वाक्य का पता करना और उसकी…

3 weeks ago

Report Writing examples in english grammer How to Write Reports explain Exercise

Report Writing • How to Write Reports • Just as no definite rules can be laid down…

3 weeks ago

Letter writing ,types and their examples in english grammer upsc state pcs class 12 10th

Letter writing • Introduction • Letter writing is an intricate task as it demands meticulous attention, still…

3 weeks ago

विश्व के महाद्वीप की भौगोलिक विशेषताएँ continents of the world and their countries in hindi features

continents of the world and their countries in hindi features विश्व के महाद्वीप की भौगोलिक…

3 weeks ago

भारत के वन्य जीव राष्ट्रीय उद्यान list in hin hindi IAS UPSC

भारत के वन्य जीव भारत में जलवायु की दृष्टि से काफी विविधता पाई जाती है,…

3 weeks ago
All Rights ReservedView Non-AMP Version
X

Headline

You can control the ways in which we improve and personalize your experience. Please choose whether you wish to allow the following:

Privacy Settings
JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now