JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now

हिंदी माध्यम नोट्स

Monatomic Ideal Gas in hindi एक परमाणुक आदर्श गैस क्या है परिभाषा उदाहरण सूत्र समझाइये

जानिये Monatomic Ideal Gas in hindi एक परमाणुक आदर्श गैस क्या है परिभाषा उदाहरण सूत्र समझाइये ?

एकपरमाणुक आदर्श गैस (Monatomic Ideal Gas)
आयतन V के एक अक्ष में किसी एकपरमाणुक गैस पर विचार कीजिए जिसमें N अणु हैं तथा प्रत्येक अणु का द्रव्यमान m है। प्रत्येक अणु अपने स्थिति निर्देशांकों x, y, z और संवेग निर्देशांकों Px Py तथा pz द्वारा निर्देशित किया जाता है। एक अणु की ऊर्जा ∈ उसकी स्थितिज व गतिज ऊर्जाओं का योग है। यदि अणु एक दूसरे के ऊपर कोई बल नहीं लगाते हैं तो उनमें कोई पारस्परिक स्थितिज ऊर्जा नहीं होती। यहाँ हम गुरुत्वीय बल क्षेत्र के प्रभाव को नगण्य मान रहे हैं। अतः कला निर्देशाकाश की सब कोष्ठिकाओं में स्थितिज ऊर्जा अचर होती है, और हम इस नियत मान को शून्य मान सकते हैं। कक्ष की दीवारें अणुओं के लिए अभेद्य हैं। इस तथ्य को, यह मान कर गणितीय रूप दिया जा सकता है कि उन कोष्ठिकाओं में, जिनके लिए स्थिति निर्देशांक x, y, z कक्ष के बाहर होते हैं, स्थितिज ऊर्जा अनंत होती है। ऐसी सब कोष्ठिकाओं में ∈ = ∞ और exp (– ∈ / kT) =0। ऐसी कोष्ठिकाओं में अणुओं की संख्या शून्य होती है, और कोष्ठिकायें वितरण फलन में कोई योगदान नहीं करती हैं। यदि अणुओं को द्रव्यमान बिन्दु मानें तो गतिज ऊर्जा केवल स्थानांतरीय होती है। कोष्ठिका i के लिए जिसके संवेग

जहाँ योग अब केवल गैस द्वारा अधिकृत स्थान में कोष्ठिकाओं के लिये है । अब कला निर्देशाकाश को समान आयतन H = dx dy dz dpx dpy, dyz की कोष्ठिकाओं में विभाजित कीजिये और पिछले समीकरण को छः अवकलों के गुणनफल से गुणा कर H से विभाजित कीजिए तब योग एक समाकल से प्रतिस्थापित किया जा सकता है।

जहाँ हमने छ: अवकलों पर आश्रित होने के कारण अल्पांशों में अणुओं की संख्या को d6N लिखा है। अब समीकरण (5) को Px Py और Pz के सब मानों पर समाकलन करें तो सामान्य आकाश में बंटन प्राप्त होता है। इससे

अर्थात् सामान्य आकाश के प्रति एकांक आयतन में अणुओं की संख्या एक अचर होती है, यह स्थिति पर आश्रित नहीं है, और अणुओं की कुल संख्या N को कुल आयतन V से विभाजित करने से प्राप्त संख्या के बराबर होती है। दूसरे शब्दों में, गैस से भरे स्थान में अणु एकसमान रूप से वितरित होते हैं। वेग आकाश में बंटन ज्ञात करने के लिए हम समीकरण (5) का x, y और z पर समाकलन करते हैं। सीमाओं का इस प्रकार चयन किया जाता है जिससे कि वे गैस से भरे स्थान को सम्मिलित करें। यह समाकल कुल आयतन V है, अत:

जो अणु गति सिद्धान्त तथा समविभाजन सिद्धान्त से व्युत्पन्न परिणाम से सहमति में है।

वायुदाब समीकरण (The Barometric Equation)

पिछले खण्ड में एक अणु की ऊर्जा पूर्णतः गतिज मानी गई थी। अब हम एक बल क्षेत्र जैसे कि गुरुत्वीय बल क्षेत्र के प्रभाव पर विचार करेंगे। त्रिविम निर्देशांकों का मूल बिन्दु पृथ्वी की सतह पर लीजिए जिसमें Z – अक्ष ऊपर की ओर ऊर्ध्वाधर है और वायु के एक स्तम्भ पर विचार कीजिए जिसका क्षैतिज अनुप्रस्थ काट A है । सरलता के लिए मान लीजिए यह एकसमान ताप T पर है। वास्तव में पृथ्वी की सतह के निकट ताप वर्धमान ऊँचाई के साथ ह्रासित होता है परन्तु स्ट्रैटोस्फियर में यह लगभग स्थिर होता है। तब एक कोष्ठिका में, जिसका ऊर्ध्वाधर निर्देशांक z है, एक अणु में गतिज ऊर्जा mv2/2 के साथ – साथ स्थितिज ऊर्जा mgz भी होती है, अतः

जहाँ H = dx dy dz dpx dpy dpz

x और y पर द्विशः समाकल से क्षैतिज अनुप्रस्थ काट A मिलता है। z = 0 और z = ∞ सीमाओं के मध्य, z पर समाकल kT/mg मिलता है। त्रिशः समाकल (2π kT / m)^ 3/2 के बराबर है। अतः

H को छ: अवकलों के गुणनफल द्वारा प्रतिस्थापित कर तथा Ni के लिये समीकरण को प्रयुक्त कर, हम पाते हैं

z में वितरण प्राप्त करने के लिए, z को छोड़कर अन्य सब चरों पर समाकल कीजिए, परिणाम प्राप्त होता है

1909 में, फ्रांस के भौतिक विज्ञानी जीन पेरें (Jean Perin) ने उपर्युक्त सम्बन्ध का उपयोग, आवोग्रादो की संख्या No के निर्धारण के लिए किया । पृथ्वी के वायुमण्डल में अणुओं की संख्या की गणना करने के स्थान पर, उसने कुछ कम घनत्व के एक द्रव में निलंबित सूक्ष्म परिमाण में कणों का उपयोग किया। निलंबन के विभिन्न स्तरों पर कणों की संख्या की गणना कर वह दोनों, बंटन फलन के प्रागुक्त रूप ( अर्थात् ऊंचाई के साथ चरघातांकी ह्रास) का सत्यापन करने में, तथा k = R/No के द्वारा No के लिए परिमाण की सही कोटि का मान प्राप्त करने में सफल हुआ। पेरें ने यह निष्कर्ष निकाला कि No का मान 6.5 और 7.2 x 10^26 के मध्य था, जब कि वर्तमान मान्य मान 6.0251 × 10^26 अणु/कि.ग्राम-मोल है। पृथ्वी के वायुमण्डल पर पुन: विचार कीजिए । समीकरण (4) का vx , vy और vz पर समाकलन करने से सामान्य आकाश में बंटन प्राप्त होता है।

जो कि स्पष्टतः यथार्थ है, क्योंकि Nmg स्तम्भ में सब अणुओं का कुल भार है। अत: हम लिख सकते हैं |

P = Po exp ( – mgz / kT )

यह समीकरण वायुमण्डल का नियम या वायुमण्डल समीकरण कहलाता है। यह एक जाति के अणुओं के समतापी वायुमण्डल के दाब की ऊर्ध्वाधर उंचाई पर निर्भरता प्रदर्शित करता है। वास्तविकता में वायुमण्डल का ताप एकसमान नहीं होता तथा इसमें अनेक गैसों का मिश्रण होता है। समीकरण (9) से

log p व z में आलेख एकसरल रेखा प्राप्त होगा जिसकी प्रवणता -mg/kT होगी। समीकरण ( 11 ) के द्वारा रॉकेटों से प्राप्त प्रेक्षणों के अनुसार यह प्रवणता T = 227 K के संगत प्राप्त होती है।

Sbistudy

Recent Posts

Question Tag Definition in english with examples upsc ssc ias state pcs exames important topic

Question Tag Definition • A question tag is a small question at the end of a…

1 week ago

Translation in english grammer in hindi examples Step of Translation (अनुवाद के चरण)

Translation 1. Step of Translation (अनुवाद के चरण) • मूल वाक्य का पता करना और उसकी…

1 week ago

Report Writing examples in english grammer How to Write Reports explain Exercise

Report Writing • How to Write Reports • Just as no definite rules can be laid down…

1 week ago

Letter writing ,types and their examples in english grammer upsc state pcs class 12 10th

Letter writing • Introduction • Letter writing is an intricate task as it demands meticulous attention, still…

1 week ago

विश्व के महाद्वीप की भौगोलिक विशेषताएँ continents of the world and their countries in hindi features

continents of the world and their countries in hindi features विश्व के महाद्वीप की भौगोलिक…

1 week ago

भारत के वन्य जीव राष्ट्रीय उद्यान list in hin hindi IAS UPSC

भारत के वन्य जीव भारत में जलवायु की दृष्टि से काफी विविधता पाई जाती है,…

1 week ago
All Rights ReservedView Non-AMP Version
X

Headline

You can control the ways in which we improve and personalize your experience. Please choose whether you wish to allow the following:

Privacy Settings
JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now