JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now

हिंदी माध्यम नोट्स

Categories: physics

सूक्ष्म और वृहद् दूरियो का मापन , लम्बन विधि ,चन्द्रमा का व्यास , प्रतिध्वनि विधि या परावर्तन विधि

सूक्ष्म और वृहद् दूरियो का मापन (measurement of very small and very large distances) : यहाँ हम दो प्रकार की दूरियों के बारे में अध्ययन करेंगे , पहली जब दुरी बहुत ही सूक्ष्म (कम) हो तथा दूसरी जब दूरी बहुत अधिक हो।  हम यहाँ यह भी ज्ञात करेंगे की इनका मापन किस प्रकार व किन विधियों से संभव है।

(अ) सूक्ष्म दूरियों का मापन (measurement of very small distances)

अत्यन्त सूक्ष्म (कम) दूरियों को मापने के लिए विशेष प्रकार की विधियाँ व तरीके काम में लिए जाते है , अत्यंत सूक्ष्म दूरियों में उनको शामिल किया जाता है तो बहुत ही कम परास की दुरी होती है जैसे परमाणु का आकार , अणु का व्यास आदि।
10-6 m परास की दुरी को प्रकाशिक सूक्ष्मदर्शी की सहायता से मापा जाता है।
10-8m परास की दुरी को इलेक्ट्रॉन सूक्ष्मदर्शी की सहायता से मापा जाता है।
अगर दूरियाँ इससे भी कम परास की हो तो इनके मापन के लिए निम्न विधियाँ काम में ली जाती है –

(i) आण्विक व्यास का निर्धारण (determination of molecular size)

यहाँ हम किसी भी अणु के व्यास की   गणना करने की विधि का अध्ययन करेंगे की किस प्रकार हम किसी अणु के व्यास की गणना कर सकते है।
यहाँ हम ऑलिक अम्ल के अणु के व्यास की गणना करेंगे।
इस विधि में हम पानी की सतह पर ऑलिक अम्ल की एक पतली परत का निर्माण करेंगे और यह कल्पना करेंगे की ऑलिक अम्ल के परत की मोटाई को ऑलिक अम्ल के व्यास के बराबर मानेगें।
सबसे पहले 20 cm3 में 1 cm3 आयतन का ऑलिक अम्ल को घोलते है।
इसे अच्छे से घोलने के बाद इस विलयन में से 1 cm3 आयतन को लेते है और इस 1 cm3 आयतन को दोबारा
20 cm3 आयतन के एल्कोहल में घोल लेते है।
इस तरह जो विलयन बनता है इस विलयन की सांद्रता (1/(20×20)) cm3 होगी।
इस विलयन की n बूंदों को पानी की समतल सतह पर डालते है और इन बूंदों को पानी की सतह पर अच्छी तरह से फैला देते है , इसे खुले में रखने पर एल्कोहल वाष्प बनाकर उड़ जाता है जबकि ऑलिक अम्ल की एक परत पीछे रह जाती है।
अब ग्राफ विधि या अन्य किसी विधि द्वारा इस ऑलिक अम्ल के परत का क्षेत्रफल नाप लेते है।
मान लेते है की n बूंदों का आयतन nV है।
अत: ऑलिक अम्ल का आयतन =  nV x (1/(20×20))
हम जानते है की आयतन (विलयन का आयतन) = क्षेत्रफल x फिल्म की मोटाई
आयतन (V) = At
At  = nV x (1/(20×20))
t  = nv /400A
चूँकि हमने प्रारम्भ में माना था की ऑलिक अम्ल की परत की मोटाई ही इसके अणु के व्यास के बराबर मान लेते है। अत: यहाँ प्राप्त ऑलिक अम्ल की परत की मोटाई (t) का मान ही अणु के व्यास के बराबर है।

(ii) परमाणु के आकार की गणना या आवोगाद्रो विधि

परमाणु का आयतन ज्ञात करने के लिए हम किसी पदार्थ के आयतन का उपयोग नहीं कर सकते , क्यूँकि पदार्थ में उपस्थित परमाणुओं के मध्य कुछ खाली स्थान होता है जिसके कारण हम पदार्थ द्वारा उसमे उपस्थित परमाणुओं के आयतन का वास्तविक मान ज्ञात नहीं कर सकते।
इसलिए आवोगाद्रो का प्रयोग परमाणु के आकार (आयतन) ज्ञात करने के लिए किया जाता है , क्यूँकि यह परमाणु के आयतन का वास्तविक मान बताता है।
आवोगाद्रो विधि में बताया गया की किसी परमाणु का आयतन , किसी पदार्थ में घेरे गए आयतन का दो तिहाई होता है।
इस आधार पर इस विधि में किसी परमाणु की त्रिज्या का मान ज्ञात करने के लिए निम्न सूत्र दिया
यहाँ r = परमाणु की त्रिज्या
M = पदार्थ का परमाणु भार
N = आवोगाद्रो संख्या
p = पदार्थ का घनत्व

(B) वृहत दूरियों का मापन (measurement of large distances)

हमने सूक्ष्म दूरियों के मापन की विधियों के बारे में ऊपर अध्ययन कर लिया है , अब हम बात करते है यदि दुरी बहुत अधिक परास की हो जैसे पृथ्वी से चाँद के मध्य की दूरी , तथा तारों की दूरी आदि।
इस प्रकार की दूरियों के मापन के लिए भी विशेष प्रकार की विधियों का प्रयोग किया जाता है क्योंकि इन दूरियों को किसी पैमाने से नहीं नापा जा सकता है।
हम इन वृहत दूरियों के मापन के लिए प्रयोग में ली जाने वाली कुछ विधियों का अध्ययन यहाँ करेंगे जो निम्न प्रकार है –

(i) लम्बन विधि या विस्थापन विधि (parallax method)

लंबन विधि पढने से पूर्व हम पहले समझते है की लंबन होता क्या है ?
लम्बन  : हमारे सामने रखी किसी वस्तु को दोनों आँखों से प्राय: एक आँख बंद करके दूसरी से देखने व दूसरी आँख को बंद करके पहली आँख से देखते है तो हम पाते है वस्तु किसी अक्ष के सापेक्ष कुछ विस्थापित होती हुई प्रतीत होती है , इस प्रभाव को लम्बन कहते है।
अर्थात हमारे सामने रखी पेन्सिल को जब किसी केन्द्र के सापेक्ष बायीं आँख को बंद करके दाई आँख से देखा जाए फिर डाई आँख को बंद करके बायीं आँख से देखा जाए तो हम पाते है की पेन्सिल की स्थिति केन्द्र बिंदु के सापेक्ष कुछ विचलित प्राप्त होती है। इस प्रभाव को ही लंबन प्रभाव कहते है।
लम्बन विधि में हम इसी प्रभाव का प्रयोग करते है। लेकिन हम यहाँ आँख से न देखकर , एक ही समय पर दो अलग अलग स्थिति से किसी तारे को देखकर इसकी स्थिति का अध्ययन करते है।

चित्रानुसार दो विभिन्न स्थितियों A तथा B से तारे (S) को देखा जाता है , एक ही समय पर s तारे को देखने पर इनके मध्य एक कोण बनता है जिसे θ से दर्शाया गया है इसे लम्बन कोण कहते है।
A व B के मध्य की दूरी b है तथा A से S व B से S के मध्य की दूरी D है।
त्रिभुज के नियम से
θ = AB/D
θ = b/D
D = b/θ
यहाँ θ रेडियन में मापा जाता है , θ का मान रेडियन में रखकर तारे की पृथ्वी से दूरी (D) की गणना की जा सकती है।

(ii) आकाशीय पिण्ड का आकार या चन्द्रमा का व्यास (size of astronomical object : diameter of moon)

हम किसी भी आकाशीय पिण्ड के आकार को हमारी आँख से नहीं नाप सकते इसके कई कारण हो सकते है जैसे हम बहुत अधिक दूरी पर स्थित है , मध्य में कई माध्यम आ जाते है इत्यादि।
आकाशीय पिण्ड का आकार जैसे चन्द्रमा का आकार (व्यास) ज्ञात करने के लिए हम लम्बन विधि का प्रयोग करते है।
चित्रानुसार हम पृथ्वी से चन्द्रमा को देखते है , देखने के लिए दूरदर्शी का उपयोग किया जाता है , जब चन्द्रमा को दूरदर्शी से देखा जाता है तो यह वृतीय आकार का दिखता है जैसा चित्र में दिखाया गया है।
चन्द्रमा के दोनों छोरो द्वारा α अंतरित कोण बनता है , पृथ्वी से चन्द्रमा की दूरी को S से दर्शाया गया है।
यदि α रेडियन में और दूरी (s) को मीटर में लिया जाए तो चन्द्रमा का व्यास (D) निम्न प्रकार दिया जाता है –
व्यास (D) = Sα

(iii) वृहद् दूरियों के मापन की प्रतिध्वनि विधि या परावर्तन विधि

इसका प्रयोग प्राय: जल सेना या जहाजो द्वारा किया जाता है , जब जहाज रात में चलते है तो उनको दूर स्थित पहाड़ी नहीं दिख पाती है , अत: दूर स्थित पहाड़ी का पता लगाने व उसकी जहाज से दूरी का पता लगाने में प्रतिध्वनि विधि का प्रयोग किया जाता है।
इस विधि में जहाज के आगे की तरफ बन्दुक से एक गोली दागी जाती है , यदि सामने पहाड़ है तो ध्वनी पहाड़ से टकराकर वापस लौट आती है , इस स्थिति में गोली दागी गयी और ध्वनि वापसी के मध्य के क्षणों को नोट किया जाता है और इस आधार पर सामने स्थित पहाड़ी की दूरी का पता लगाया जाता है।
माना ध्वनि V वेग से चल रही है तथा समय अन्तराल t प्राप्त होता है तो पहाड़ी की दूरी s है।
ध्वनि के पहाड़ी तक जाने व वापस जहाज तक आने की कुल दूरी = s + s = 2S
अत: 2S = vt
अत: दूरी (S) = vt/2
Sbistudy

Recent Posts

मालकाना का युद्ध malkhana ka yudh kab hua tha in hindi

malkhana ka yudh kab hua tha in hindi मालकाना का युद्ध ? मालकाना के युद्ध…

4 weeks ago

कान्हड़देव तथा अलाउद्दीन खिलजी के संबंधों पर प्रकाश डालिए

राणा रतन सिंह चित्तौड़ ( 1302 ई. - 1303 ) राजस्थान के इतिहास में गुहिलवंशी…

4 weeks ago

हम्मीर देव चौहान का इतिहास क्या है ? hammir dev chauhan history in hindi explained

hammir dev chauhan history in hindi explained हम्मीर देव चौहान का इतिहास क्या है ?…

4 weeks ago

तराइन का प्रथम युद्ध कब और किसके बीच हुआ द्वितीय युद्ध Tarain battle in hindi first and second

Tarain battle in hindi first and second तराइन का प्रथम युद्ध कब और किसके बीच…

4 weeks ago

चौहानों की उत्पत्ति कैसे हुई थी ? chahamana dynasty ki utpatti kahan se hui in hindi

chahamana dynasty ki utpatti kahan se hui in hindi चौहानों की उत्पत्ति कैसे हुई थी…

1 month ago

भारत पर पहला तुर्क आक्रमण किसने किया कब हुआ first turk invaders who attacked india in hindi

first turk invaders who attacked india in hindi भारत पर पहला तुर्क आक्रमण किसने किया…

1 month ago
All Rights ReservedView Non-AMP Version
X

Headline

You can control the ways in which we improve and personalize your experience. Please choose whether you wish to allow the following:

Privacy Settings
JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now