JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now

हिंदी माध्यम नोट्स

मैक्सवेल का आश्विक वेगों के बंटन का नियम क्या है maxwell law of distribution of molecular velocities pdf in hindi

maxwell law of distribution of molecular velocities pdf in hindi मैक्सवेल का आश्विक वेगों के बंटन का नियम क्या है ?

आणविक वेगों का बंटन तथा अभिगमन घटनायें
(Distribution of Molecular Velocities and Transport Phenomena)
मैक्सवेल का आश्विक वेगों के बंटन का नियम
(Maxwell’s Law of Distribution of Molecular Velocities)
गैसों के गत्यात्मक मॉडल के अनुसार गैस के अणु विविध सम्भव चालों से सब सम्भव दिशाओं में गतिशील होते हैं। अपनी गति के दौरान अणु अन्य अणुओं से तथा पात्र की दीवारों से टक्कर करते हैं जिससे उनकी चाल एवं गति की दिशा बदल जाती है। कितने अणुओं का वेग एक निर्दिष्ट परिमाण अथवा दिशा में होता है, इसका ज्ञान प्राप्त करने के लिए वेगों के बंटन फलन का अध्ययन आवश्यक है। मैक्सवेल के अनुसार अणुओं में वेगों का बंटन एक नियम के अनुसार ही होता है। इस नियम के अनुसार नियत ताप पर अणुओं का वर्ग माध्य मूल वेग (root mean square velocity) तथा उन अणुओं की संख्या जिनके वेग निश्चित वेग परास में होते हैं, नियत रहते हैं। मैक्सवेल के इस नियम को आणविक वेग बंटन ( distribution of molecular velocities) का नियम कहते हैं।
मैक्सवेल ने वेग बंटन के नियम को व्युत्पन्न करने में निम्नलिखित परिकल्पनाओं का उपयोग किया।
1. गैस के किसी परिमित आयतन में अणुओं की संख्या बहुत अधिक होती है।
2. अणु अपने विस्तार की तुलना में वृहत् दूरियों से पृथक्कृत होते हैं तथा वे सतत गति की अवस्था में रहते हैं। 3. एक गैस के समस्त अणु समान होते हैं तथा उन्हें अति लघु आकार के गोलाकार दृढ़ पिण्डों के रूप में माना
जा सकता है।
4. जब अणु टकराते हैं, केवल उस अवस्था को छोड़कर, वे एक दूसरे पर कोई बल नहीं लगाते हैं। अत: अणु टक्करों के मध्य ( बाह्य बल की अनुपस्थिति में ) सीधी रेखाओं में गति करते हैं।
5. अणुओं के एक दूसरे से तथा पात्र की दीवारों से संघट्ट पूर्णतः प्रत्यास्थ होते हैं।
6. बाह्य बलों की अनुपस्थिति में अणुओं का सम्पूर्ण उपलब्ध आयतन में वितरण एकसमान होता है। इस कल्पना का तात्पर्य है कि पात्र में किसी स्थान पर आयतन अल्पांश dV में अणुओं की संख्या dN का मान होगा :

dN = n dV
जहाँ n = N/V
प्रति एकांक आयतन में अणुओं की संख्या है।
7. आणविक वेगों की सब दिशाएं समान रूप से प्रसंभाव्य होती है तथा उनकी चाल के सर्व संभव मान हो सकते
हैं।

8. टक्करों के परिणामस्वरूप अणुओं की चाल में निरन्तर परिवर्तन होता रहता है परन्तु साम्यावस्था में चालों की किसी निर्दिष्ट परास में अणुओं की संख्या नियत रहती है।
मान लीजिये किसी पात्र में प्रति एकांक आयतन n अणु है। यदि किसी क्षण किसी अणु के वेग का परिमाण c है और X, Y तथा Z अक्षों के अनुदिश इसके घटक क्रमश: u, v, w हैं तो
c2 = u2 + v2 + w2
….(1)
इसी प्रकार X, Y, Z अक्षों के अनुदिश वेग c + dc के घटक क्रमश: u + du, v + dv तथा w + dw है। अब मान लीजिये X अक्ष के अनुदिश अणु का वेग u तथा u + du के मध्य होने की प्रायिकता f(u) du है। जहाँ f(u) वेग u का कोई फलन है। इसी प्रकार Y तथा Z अक्षों के अनुदिश अणु का वेग v व v + dv तथा wa w + dw के मध्य होने की प्रायिकता क्रमश: f(v)dv तथा f(w) dw मानी जा सकती है। यहाँ अणु वेग के घटकों में एकरूपता होने के कारण फलन ‘f तीनों घटकों के लिए समान माना गया है।
प्रायिकता के सिद्धान्त से अणु वेग के घटक X दिशा में u व u + du, Y – दिशा में v व v + dv तथा Z – दिशा में w w + dw के बीच मध्य होने की संयुक्त प्रायिकता होती है
:
P (u,v,w) = f (u) du f(v)du f(w) dw
= f(u) f(v) f(w) du dv dw
.. उपर्युक्त परासों के मध्य वेग घटक वाले अणुओं की संख्या
dn = n P (u, v, w)
= nf (u) f(v) f(w) du dv dw अब यदि X, Y व Z दिशाओं में अक्षों को अणु के वेग घटकों क्रमश: u, v तथा w द्वारा व्यक्त करें तो सभी गतिशील अणुओं को इस आरेख में बिन्दुओं द्वारा दर्शाया जा सकता है। इस आरेख को वेग सूचक आरेख (velocity indicator diagram) कहते हैं। इस आरेख में बिन्दु (u, v, w) पर स्थित अल्पांश du, dv, dw में वेग बिन्दुओं की संख्या समीकरण ( 3 ) अनुसार dn होगी । अतः इन वेग बिन्दुओं का घनत्व

चूंकि p वेग की दिशा पर निर्भर नहीं है इसलिए वेग निर्देशाकांश (velocity space) में मूल बिन्दु से समान त्रिज्य दूरी पर सभी अल्पांशों में p का मान समान रहता है। अर्थात c के नियत मान के लिये

n f (u) f(v) f(w) = नियतांक

समीकरण ( 5 ) का अवकलन करने पर

d [( nf (u) f (v) f (w)] = 0

अवकलन करने पर,

udu + vdv + wdw = 0 ….(8)

समीकरण (7) तथा (8) से संयुक्त समीकरण बनाने के लिए इस लागरांज (Lagrange) द्वारा दी गई अनिर्धारित गुणकों की विधि ( method of undetermined multipliers ) का उपयोग करते हैं। इसके अनुसार समीकरण ( 8 ) को अज्ञात नियतांक β से गुणा करके समीकरण ( 7 ) में जोड़ने पर,

चूंकि u, v तथा w चर स्वतन्त्र होते हैं इसलिए इनके अवकलन स्वेच्छ (arbitrary) होंगे, जैसे मान लीजिये du ≠ 0 , dv = dw = 0 इत्यादि। अतः इन सभी अवकलों के गुणक पृथक रूप से शून्य होने चाहिये।

अब वेग c तथा c + dc के बीच वेग वाले अणुओं की संख्या ज्ञात करने के लिए वेग आरेख में c था c + dc त्रिज्या के दो संकेन्द्रीय गोले खींचते हैं। इन गोलों के बीच का वेग समष्टि में आयतन ( velocity volume) 4π c2dc होगा। संख्या यदि इस वेग आयतन में अणुओं की संख्या dnc हो तो वेग परास c व c + dc के मध्य वेगों वाले अणुओं की

a तथा b के मानों का निर्धारण : चूंकि एकांक आयतन में कुल अणुओं की संख्या n होती है अत: समीकरण (13) का सभी वेग मानों के लिए समाकलन करने पर,

चूँकि X – दिशा में u तथा u + du के मध्य वेग वाले अणुओं की प्रति एकांक आयतन संख्या

यदि अणु का द्रव्यमान m है तो X- अक्ष के लम्बवत् दीवार पर अणुओं द्वारा लगाया दाब

[प्रति टक्कर संवेग परिवर्तन = 2mu तथा एकांक क्षेत्रफल पर प्रति सेकण्ड टकराने वाले अणुओं की संख्या

समीकरण (14) एवं ( 15 ) को समीकरण ( 13 ) में रखने पर

यह समीकरण मैक्सवेल का वेग बंटन का नियम कहलाता है। यह समीकरण उन अणुओं की संख्या प्रदान करता है जिनके वेग सदिशों का शीर्ष वेग समष्टि में त्रिज्या c तथा मोटाई dc के गोलीय कोश में होता है।

.: c तथा c + dc के बीच अणु के वेग होने की प्रायिकता

समीकरण ( 12 ) द्वारा व्यक्त फलन जो वेग बिन्दुओं का वेग समष्टि में घनत्व निरूपित करता है, अर्थात्

मैक्सवेल का वेग बंटन फलन कहलाता है। इसको c के फलन के रूप में चित्र में दर्शाया गया है। बहुधा केवल यह जानने की आवश्यकता होती है कि कितने अणुओं की चालें एक निश्चित परास में है। अतः dnc/dc आणविक चालों का मैक्सवेल बंटन फलन समीकरण (16) से है। इसे c के फलन के रूप में चित्र (5.14 ) में आलेखित किया गया
है (c सदैव धनात्मक होता है)।
गुणक c2 के कारण चित्र 5.1-4 में आलेख c = 0 पर शून्य होता है, एक उच्चिष्ठ तक उन्नयन करता है और फिर इसका मान हासित होता है। इस आलेख में c तथा c + dc के मध्य चाल वाले

अणुओं की संख्या एक संकरी पट्टी के क्षेत्रफल द्वारा निरूपित की जाती है, जैसा कि छायांकित क्षेत्र द्वारा दर्शाया गया है। चित्र (5.1-5) dnc/nc फलन के तीन भिन्न तापों पर आलेख प्रदर्शित करता है। इन तीनों वक्रों के नीचे के क्षेत्रफल समान होते हैं क्योंकि यह क्षेत्रफल अणुओं की कुल संख्या निरूपित करता है।

Sbistudy

Recent Posts

मालकाना का युद्ध malkhana ka yudh kab hua tha in hindi

malkhana ka yudh kab hua tha in hindi मालकाना का युद्ध ? मालकाना के युद्ध…

4 weeks ago

कान्हड़देव तथा अलाउद्दीन खिलजी के संबंधों पर प्रकाश डालिए

राणा रतन सिंह चित्तौड़ ( 1302 ई. - 1303 ) राजस्थान के इतिहास में गुहिलवंशी…

4 weeks ago

हम्मीर देव चौहान का इतिहास क्या है ? hammir dev chauhan history in hindi explained

hammir dev chauhan history in hindi explained हम्मीर देव चौहान का इतिहास क्या है ?…

4 weeks ago

तराइन का प्रथम युद्ध कब और किसके बीच हुआ द्वितीय युद्ध Tarain battle in hindi first and second

Tarain battle in hindi first and second तराइन का प्रथम युद्ध कब और किसके बीच…

4 weeks ago

चौहानों की उत्पत्ति कैसे हुई थी ? chahamana dynasty ki utpatti kahan se hui in hindi

chahamana dynasty ki utpatti kahan se hui in hindi चौहानों की उत्पत्ति कैसे हुई थी…

1 month ago

भारत पर पहला तुर्क आक्रमण किसने किया कब हुआ first turk invaders who attacked india in hindi

first turk invaders who attacked india in hindi भारत पर पहला तुर्क आक्रमण किसने किया…

1 month ago
All Rights ReservedView Non-AMP Version
X

Headline

You can control the ways in which we improve and personalize your experience. Please choose whether you wish to allow the following:

Privacy Settings
JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now