हिंदी माध्यम नोट्स
input and output impedances of the four terminal network in hindi चार टर्मिनल जाल की निवेशी व निर्गम प्रतिबाधायें
(C) चार टर्मिनल जाल की निवेशी व निर्गम प्रतिबाधायें (Input and Output impedances of the four terminal network)–
किसी भी लोड युक्त चार टर्मिनल जाल के निवेशी टर्मिनलों (1), ( 1 ) के बीच प्रतिबाधा को निवेशी प्रतिबाधा (Zi) तथा उसके निर्गम टर्मिनलों (2), (2) के बीच की प्रतिबाधा को निर्गम प्रतिबाधा (Zo) कहते हैं। इन प्रतिबाधाओं का मान Z पैरामीटरों के रूप में ज्ञात किया जा सकता है। माना चित्र (1.7-2) में लोड युक्त चार टर्मिनल जालों को प्रदर्शित किया गया है।
निवेशी प्रतिबाधा
निवेशी प्रतिबाधा (Zi) = V1/I1
समीकरण ( 5 ) से निवेशी वोल्टता V का मान होगा-
यदि निर्गम टर्मिनलों (2), (2) में लोड ZL लगा हो तो
V2/I2 = -ZL
(- चिन्ह इसलिए उपस्थित होता है क्योंकि I2 की दिशा अन्दर की ओर धनात्मक मानी गयी है, चित्र (1.7–2) में देखें)
.: समीकरण (6) से
V2 = Z21 I1 + Z22 l2
समीकरण (40) का मान समीकरण ( 38 ) में रखने पर निवेशी प्रतिबाधा का मान होगा-
निर्गम-प्रतिबाधा-
चार टर्मिनल जाल के निर्गम टर्मिनलों (2), (2) के मध्य निर्गम प्रतिबाधा
यदि निवेशी टर्मिनलों के मध्य जुड़े स्रोत की प्रतिबाधा Zs हो तो
किसी जाल के एक पाश या लूप में लगायी गयी वोल्टता के कारण दूसरे पाश या लूप से उत्पन्न धारा के अनुपात को जबकि दूसरे वि.वा. बल हटा लिये गये हों, परिपथ की अन्तरित प्रतिबाधा (transfer impedance) कहते हैं।
(D) तुल्य परिपथ (Equivalent Circuits)
Z प्राचल के रूप में I1 तथा I2 को स्वतंत्र चर लेने पर चर्तुटर्मिनल जाल के लिए खुला परिपथ Z प्रतिबाधा प्राचलों के रूप में समीकरणों को चित्र (1.7 – 3 ) से प्रदर्शित परिपथ से दर्शाया जा सकता है।
निवेशी टर्मिनलों के मध्य वोल्टता V1 प्रतिबाधा Z11 पर वोल्टता पतन (Z11 I1) तथा एक जनित्र वोल्टता (Z12 l2) योग के तुल्य है इसी प्रकार निर्गम टर्मिनलों के मध्य वोल्टता V2, एक प्रतिबाधा Z22 पर वोल्टता पतन (Z22 I2) तथा एक जनित्र वोल्टता (Z21 I1) के योग के तुल्य है।
चित्र (1.7-3) के परिपथ में दो अन्तरण जनित्र (transfer generator) उपस्थित हैं। इस परिपथ को एक जनित्र के परिपथ के रूप में परिवर्तित किया जा सकता है। समी. (5) व (6) को निम्न रूप में लिखा जा सकता है-
उपरोक्त समीकरणों को निम्न परिपथ चित्र (1.7-4) द्वारा निरूपित किया जा सकता | चित्र (1.7-4) में प्रदर्शित परिपथ में अन्तरण जनित्र को धारा स्रोत के रूप में परिवर्तित करके परिपथ को संशोधित किया जा सकता है। यह प्रतिबाधा ( Z22 – Z12) के समान्तर क्रम में जुड़ा होगा । इस प्रकार संशोधित तुल्य परिपथ चित्र (1.7-5) में प्रदर्शित किया गया है। इसकी रचना के लिये निम्न रूपांतरण प्रयुक्त किया है-
विभवान्तर I2 (Z 22 – Z12) + I1 (Z21 – Z12)
चित्र (1.7-5)
Y- प्राचल के रूप में
इसी प्रकार चर्तुटर्मिनल जाल के Y प्राचलों के रूप में तुल्य परिपथ समीकरण ( 12 ) तथा ( 13 ) से प्राप्त किये जा सकते हैं, इन्हें चित्र (1.7-6 व 7 ) में प्रदर्शित किया गया है।
h- प्राचल के रूप में
चर्तुटर्मिनल जाल का / प्राचल के रूप में तुल्य परिपथ समीकरण ( 19 ) तथा ( 20 ) से प्राप्त किया जा सकता है तथा इसके तुल्य परिपथ को चित्र (1.7-8) में दर्शाया गया है।
V1 = I1 h11 + V2h12 = h11
प्रतिबाधा पर वोल्टता पतन + जनित्र वोल्टता V2h12
I2 = 11 h21 + V2h22 = धारा जनित्र से प्राप्त धारा ( I1h 21 ) + प्रवेश्यता h22 से वोल्टता V2 के कारण प्रवाहित धारा
उपरोक्त तुल्य परिपथ ट्रॉजिस्टरों के लिए बहुत उपयुक्त है।
जाल प्रमेय (NETWORK THEOREMS)
किरचॉफ के नियमों की सहायता से किसी जाल की शाखाओं में धारा का मान तथा संधियों पर वोल्टता का मान ज्ञात किया जा सकता है लेकिन जटिल जालों (Networks) का विश्लेषण किरचॉफ के नियमों से करना कभी-कभी बहुत कठिन हो जाता है। ऐसे जालों का विश्लेषण जाल प्रमेयों की सहायता से करना अति सुगम होता है। जाल विश्लेषण के लिये प्रतिपादित प्रमुख जाल प्रमेय (Network Theorems) निम्न हैं-
(i) अध्यारोपण प्रमेय ( Superposition Theorem)
इस प्रमेय के अनुसार यदि किसी रैखिक प्रतिबाधाओं के जाल में दो या दो से अधिक जनित्र जुड़े हों तो उसके किसी बिन्दु से किसी अवयव में प्रवाहित धारा का मान उन सब धाराओं के योग के बराबर होता है जो कि प्रत्येक जनित्र के कारण प्रवाहित होती है जबकि दूसरे जनित्रों को उनकी आन्तरिक प्रतिबाधाओं (internal impedances) द्वारा प्रतिस्थापित कर दिया जाता है।
व्युत्पत्ति (Proof)
अध्यारोपण प्रमेय को सिद्ध करने के लिये मान लीजिये दो जनित्र जिनके वि. वा. बल E1 व E2 किसी जटिल परिपथ को ऊर्जा प्रदान कर रहे हैं। जटिल परिपथ को तुल्य स्टार जाल परिपथ से प्रतिस्थापित करने पर परिणामी परिपथ चित्र (1.8 – 1 ) की भांति प्राप्त होता है। इस परिपथ में दो पाश है जिनमें धारायें मान लीजिए I1, I2 हैं।
इस परिपथ के लिये पाश – समीकरण हैं।
परिपथ में केवल E1 स्रोत मानने पर
अब हम Z1 से प्रवाहित धारा I1 का मान अध्यारोपण प्रमेय के उपयोग से ज्ञात करते हैं। इस प्रमेय के अनुसार यदि हम जनित्र E2 को लघुपथित कर ( उसकी आन्तरिक प्रतिबाधा को नहीं यदि वह उपस्थित हो) केवल E1 के कारण Z1 में धारा I1′ प्राप्त करते हैं तथा जनित्र E1 को लघुपथित कर केवल E2 के कारण Z1 में धारा I1″ प्राप्त करते हैं तो / का मान I1′ व I1″ के बीजीय योग के तुल्य होना चाहिये । I1, ‘ के लिये जाल का रूप होगा-
I1″ की दिशा I1′ के विपरीत है । अत: Z1 से प्रवाहित परिणमित धारा ( I1′ – I1″ ) होगी। I व I के मानों के उपयोग से प्राप्त परिणमित धारा समी. ( 3 ) से प्राप्त धारा I1 के तुल्य है जिससे अध्यारोपण प्रमेय सिद्ध हो जाता है। इसी प्रकार अन्य अवयवों में प्रवाहित धारा का मान ज्ञात किया जा सकता है।
उदाहरण- निम्न चित्र ( 1.8–4 ) के
जाल में प्रतिरोध R1 R2 तथा R3 से प्रवाहित धारा तथा बिन्दु A तथा B के बीच विभवान्तर का मान अध्यारोपण के प्रमेय का उपयोग करके ज्ञात कीजिये ।
In the circuit given below (Fig. 1.8-4) determine the current flowing through the resistances R1 R2 and R3 and also the potential difference between the points A and B using the superposition theorem.
हल – माना कि उपर्युक्त जाल में केवल स्रोत E1 कार्य कर रहा है तथा स्रोत E2 को उसकी आन्तरिक प्रतिबाधा (प्रतिरोध) के द्वारा प्रतिस्थापित किया जाता है (इस स्थिति में यह शून्य है ) । इस अवस्था में उपर्युक्त परिपथ निम्न चित्र (1.8-5 ) में प्रदर्शित किया गया है-
अब माना कि जाल में केवल वोल्टता स्रोत E2 लगा है तथा वोल्टता स्रोत E1 को उसकी आन्तरिक प्रतिबाधा ( प्रतिरोध) से प्रतिस्थापित किया जाता है (इसमें यह शून्य है ) । इस अवस्था के लिये चित्र (1.8 – 4 ) का रूपान्तरित परिपथ निम्न चित्र (1.8-6) में प्रदर्शित किया गया है-
चित्र (1.8–6) के जाल का कुल प्रतिरोध
उदाहरण- निम्न परिपथ में अध्यारोपण के प्रमेय का उपयोग कर शाखा CE में धारा का मान ज्ञात कीजिए ।
In the circuit given below, using the superposition theorem determine the current flowing through the branch CE.
हल- अध्यारोपण के प्रमेय का उपयोग करते समय एक स्रोत से धारा का मान ज्ञात करते समय अन्य धारा स्रोतों को खुले परिपथ में रखना होता है जबकि वोल्टता स्रोतों को लघुपथित माना जाता है। अत: 10 A के धारा स्रोत से इच्छित शाखा में धारा का मान ज्ञात करते हुए दूसरे 5A के धारा स्रोत को खुला मानना होगा। जिससे शाखा CE से प्रवाहित धारा
Recent Posts
Question Tag Definition in english with examples upsc ssc ias state pcs exames important topic
Question Tag Definition • A question tag is a small question at the end of a…
Translation in english grammer in hindi examples Step of Translation (अनुवाद के चरण)
Translation 1. Step of Translation (अनुवाद के चरण) • मूल वाक्य का पता करना और उसकी…
Report Writing examples in english grammer How to Write Reports explain Exercise
Report Writing • How to Write Reports • Just as no definite rules can be laid down…
Letter writing ,types and their examples in english grammer upsc state pcs class 12 10th
Letter writing • Introduction • Letter writing is an intricate task as it demands meticulous attention, still…
विश्व के महाद्वीप की भौगोलिक विशेषताएँ continents of the world and their countries in hindi features
continents of the world and their countries in hindi features विश्व के महाद्वीप की भौगोलिक…
भारत के वन्य जीव राष्ट्रीय उद्यान list in hin hindi IAS UPSC
भारत के वन्य जीव भारत में जलवायु की दृष्टि से काफी विविधता पाई जाती है,…