JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now

हिंदी माध्यम नोट्स

Categories: physics

जड़त्वीय नियतांक क्या है ? Inertial Coefficients in hindi J व ω की असमान्तर स्थिति (Case of J not Parallel to ω)

J व ω की असमान्तर स्थिति (Case of J not Parallel to ω)  जड़त्वीय नियतांक क्या है ? Inertial Coefficients in hindi ?

जडत्वीय नियतांक (Inertial Coefficients)

न्यूटन के गति के नियमों के अनुसार यदि कोई पिण्ड विरामावस्था में है अथवा एकसमान चाल से ऋजु रेखा में चल रहा है तो उसकी इस अवस्था में  परीवर्तन करने के लिय उस पर बाह्य बल  आरोपित करना पड़ता है। पिण्डों के इस गुण को जड़त्व कहते हैं। किसी पिण्ड का द्र्व्मान जितना अधिक होता उसकी विरामावस्था अथवा उसकी गतिक अवस्था में परिवर्तन करने के लिए उतने ही अधिक बल की आवश्यकता होती है। इस प्रकार किसा पिण्ड का द्रव्यमान ही उसके जडत्व का मापक है

इसी प्रकार यदि कोई पिण्ड विरामावस्था में है  अथवा एकसमान कोणीय वेग से घुम रहा है तो उसकी इस अवस्था में परिवर्तन करने  के लिए (किसी दिए अक्ष के प्रति घुमाने अथवा कोणीय वेग में परिवतन के लिए ) अवस्था में परिवर्तन करने के लिए उस पर एक बल आघूर्ण लगाना पड़ता है। पिण्ड के इस गुण को पिण्ड का घूर्णी जड़त्व कह सकते है तथा इसके मापन  के लिए प्रयुक्त भौतिक राशि को घूर्णन अक्ष के प्रति ‘जडत्व आघूर्ण कहा जाता हैं किसी पिण्ड का जड़त्व आघूर्ण जितना अधिक होता है उसकी घूर्णन अवस्था में परिवर्तन के  लिए उतना ही अधिक उस पर बल-आघूर्ण लगाना पड़ता है

अतः घर्णन गति में किसी पिण्ड का जड़त्व आघूर्ण वही कार्य करता है  जो रेखीय गति में पिण्ड का द्र्व्मान करता है इसी समानता के आधार पर जिस प्रकार किसी पिण्ड के द्र्व्मान  को उस पिण्ड के जडत्व गणांक के रूप में परिभाषित कर सकते है। उसी प्रकार घूर्णन गति में जड़त्व आघूर्ण (moment of intertia) को घूर्णन जड़त्व गुणाक (coefficient of rotational inertia) या जडत्वीय नियतांक (inertial coefficient) कहा जा सकता है। परन्तु  जड़त्व  तथा जडत्व आघूर्ण में एक अंतर है जडत्व जहाँ केवल पिण्ड के द्रव्यमान पर निर्भर करता है वहाँ जड़त्व आघूर्ण पिण्ड के द्रव्यमान के अतिरिक्त

घूर्णन अक्ष, जिसके प्रति पिण्ड घूर्णन कर रहा है, के सापेक्ष द्रव्यमान वितरण पर भी निर्भर करता है।

किसी पिण्ड को कणों का निकाय मानकर, मूल बिन्दु 0 के सापेक्ष पिण्ड का कुल कोणीय संवेग J का मान होगा-

j = Σ mi (ri x vi) ……………….(1)

जहाँ mi ri vi  पिण्ड के  i-वे कण के, क्रमशः द्रव्यमान, स्थिति सदिश और वेग हैं। घूर्णन गति में पिण्ड के लिए  ri का परिमाण है| ri| नियत रहता है, अतः कण का वेग vi उस पिण्ड की घूर्णन गति से उत्पन्न होता है।

Vi = ω x ri

समीकरण (1) व (2) से

J = Σ mi ri x (ω x ri) ……….. ……(3)

परन्तु   A x  (B x C)= B (A.C)- C (A.B) सम्बन्ध का उपयोग समीकरण (3) में रखने पर

J = Σ mi [ω r2 – ri (ri . ω) …………………………(4)

यदि ωx, ωy व ωz,सदिश  ω के x, y, व z दिशाओं में घटक हों व xi yi, zi सदिश ri के घटक हों तो समीकरण (4) को घटकों के रूप में लिखनें पर

Jx = Σ mix r2i – xi (ri . ω) ………………………(5)

(ri . ω)  अदिश राशि है तथा ri . ω = xi ωx + yi ωy + zi ωy, होगा अतः

Jx = { Σ mi (ri2 – xi2)} ωx + {- Σ mi xiyi } ωy + { Σ mi xizi} ωz ………………(6)

इसी प्रकार

Jy = { Σ mi yi xi } ωx + { Σ mi (ri2 – yi2)} ωy + { – Σ mi yi ziz ……………………..(7)

Jz = {- Σ mi zi xi } ωx + {- Σ mi (yi zi)} ωy + { Σ mi (ri2 – zi2) ωz …………………..(8)

समीकरण (6), (7) व (8) को निम्न रूप से भी लिखा जा सकता है:

Jx = Ixx ωx + IXY ωY + IXZ ωz

JY = IYX ωx + IYY ωy + IYZ ωz

JZ = IZX ωx + IZY ωy + IZZ ωz ……………………………… (9)

जहाँ  Ixx =Σmi (ri2 – xi2), Iyy = Σ mi (ri2 – yi2)

IZZ = Σ mi (ri2 – zi2) Iyx = – Σ mi xi yi

Ixz = IZY = – Σ mi xi zi, Iyz = IZY = – Σ mi yi zi

उपरोक्त नौ गुणांक ( Ixx, Iyy, Izz, Ixy, Iyx, Iyz, Izy, Ixz, व Izy), जड़त्वीय गुणांक (inertial coefficients) कहलाते हैं। समीकरण (9) को मैट्रिक्स (matrix) रूप में लिखने पर

(Jx)  = (Ixx, Ixy, Ixz) (ωx)

(Jy)        (Iyx , Iyy , Iyz ) (ωy)

(Jz)        (Izx , Izy , Izz ) (ωz) …………………..(10)

उपरोक्त जड़त्वीय गुणांकों की मैट्रिक्स के विकर्ण पदों (diagonal elements) में एक विशेष गण होता है।

Ixx = Σ mi (ri2 – xi2) = Σ mi (xi2 + yi2 + zi2 – xi2)

= Σ mi (yi2 + zi2)………………….(11)

(yi2 + zi2)i कण की X-अक्ष से दूरी का वर्ग है। अर्थात् Ixx ज्ञात करने के लिए कण के द्र्व्मान को उसकी X-अक्ष से दूरी के वर्ग से गुणा करने पर और फिर सभी कणों  के लिए योग कर Ixx ज्ञात किया जा सकता है। अतः Ixx  दृढ़ पिण्ड का x-अक्ष के सापेक्ष जडत्व सापेक्ष जड़त्व आघूर्ण (moment of inertia) कहलाता है। इसी प्रकार Iyy, Ixx को पिण्ड का Y-अक्ष व Z-अक्ष के सापेक्ष जडत्व आघूर्ण कहा जाता है

ये नौ जड़त्वीय गुणांक एक द्वितीय कोटि टेसर (second rank tensor) के घटक है इस टेन्सर को जडत्व आघूर्ण टेन्सर कहते हैं। इस टेन्सर के लिए जैसा सिद्ध किया जा चुका है।

Iij = Iji    (Ixy = Iyx = IZY , Izx = Ixz)

अतः यह एक सममित टेन्सर (symmetric tensor) है। जड़त्व आघूर्ण टेन्सर कोणीय संवेग  J तथा कोणीय वेग ω में सम्बन्ध स्थापित करता है।

समीकरण (9) के अनुसार कोणीय संवेग सदिश J की दिशा सदैव घूर्णन अक्ष या कोणीय वेग ω की दिशा में नहीं होती है, (जबकि सदिश  ri कोणीय सदिश ω के लम्बवत न हो)। परन्तु ऐसा सम्भव है कि किसी भी आकार के दृढ़ पिण्ड के लिए तीन परस्पर लम्बवत अक्ष या दिशायें हो सकती है, जिनके। लिए कोणीय संवेग घूर्णन अक्ष के सम्पाती हो। ये अक्ष जड़त्व के मुख्य अक्ष कहलाते हैं और उनके संगत। ही जड़त्वीय आघूर्ण ज्ञात किये जाते हैं। इस अवस्था में जड़त्व के गुणनफल (products of inertia)

Ixy = Iyz = Ixz,  = Iyx  = Izy = Izx = 0 होते हैं।

तथा    Jx = Ixx ωx

Jy = Iyy ωy

Jz = Izz ωz

J व ω की असमान्तर स्थिति (Case of J not Parallel to ω)

घूर्णन गति कर रहे एक दृढ पिण्ड के कोणीय संवेग (J) तथा कोणीय वेग (ω) को निम्न सम्बन्ध द्वारा लिखा जा सकता है :

J = I ω या  [J] = [I] [ω] …………………….(1)

अब यदि वस्तु असममित है तो उसकी सममिति अक्ष (symmetry axes) नहीं होगी। इस अवस्था में जड़त्व गुणनफलों (products of inertia) का मान भी शून्य नहीं होगा और कोणीय संवेग का मान समीकरण (9) में दी गई समीकरणों से ज्ञात करना होगा। इसके साथ ही इस स्थिति में मुख्य अक्षीय जड़त्व के मान भी ज्ञात नहीं किये जा सकते हैं। अब, यदि हम तीनों समकोणिक घूर्णन अक्षों को X, Y, Z-अक्षों के अनुदिश मान लें और केवल x-अक्ष के प्रति घूर्णन करायें तो,

ω = ωx I तथा ωy = ωz = 0

समीकरण (1) से

Jx = Ixx ωx + Ixy ωy + ixz ωz

Jy  = Iyx ωx + IYY ωy + Iyz ωz

JZ = Izx ωx + Izyωy + Izz ωz

अतः इस अवस्था में

Jx = Ixx ωx JY = Iyx ωx JZ = Izx ωx

इसका तात्पर्य यह हुआ कि इस स्थिति में कोणीय संवेग J = Jx I + jy j + jz k, और कोणीय वेग ω = ωx i एक दूसरे के समान्तर नहीं हैं।।

इसी प्रकार से यदि घूर्णन क्रमशः y व z-अक्षों के सापेक्ष करायें तो ω = ωy j  व  ω = ωz k और इन स्थितियों में भी कोणीय संवेग व कोणीय वेग एक ही दिशा में नहीं होंगे।

Sbistudy

Recent Posts

सती रासो किसकी रचना है , sati raso ke rachnakar kaun hai in hindi , सती रासो के लेखक कौन है

सती रासो के लेखक कौन है सती रासो किसकी रचना है , sati raso ke…

11 hours ago

मारवाड़ रा परगना री विगत किसकी रचना है , marwar ra pargana ri vigat ke lekhak kaun the

marwar ra pargana ri vigat ke lekhak kaun the मारवाड़ रा परगना री विगत किसकी…

11 hours ago

राजस्थान के इतिहास के पुरातात्विक स्रोतों की विवेचना कीजिए sources of rajasthan history in hindi

sources of rajasthan history in hindi राजस्थान के इतिहास के पुरातात्विक स्रोतों की विवेचना कीजिए…

2 days ago

गुर्जरात्रा प्रदेश राजस्थान कौनसा है , किसे कहते है ? gurjaratra pradesh in rajasthan in hindi

gurjaratra pradesh in rajasthan in hindi गुर्जरात्रा प्रदेश राजस्थान कौनसा है , किसे कहते है…

2 days ago

Weston Standard Cell in hindi वेस्टन मानक सेल क्या है इससे सेल विभव (वि.वा.बल) का मापन

वेस्टन मानक सेल क्या है इससे सेल विभव (वि.वा.बल) का मापन Weston Standard Cell in…

3 months ago

polity notes pdf in hindi for upsc prelims and mains exam , SSC , RAS political science hindi medium handwritten

get all types and chapters polity notes pdf in hindi for upsc , SSC ,…

3 months ago
All Rights ReservedView Non-AMP Version
X

Headline

You can control the ways in which we improve and personalize your experience. Please choose whether you wish to allow the following:

Privacy Settings
JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now