JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now

हिंदी माध्यम नोट्स

Categories: Physics

आवेशित चालक की सतह पर बल force on the surface of charged conductor

(force on the surface of charged conductor ) आवेशित चालक की सतह पर बल  : जैसा की हम सब पढ़ चुके है की जब किसी चालक को आवेश दिया जाता है तो वह आपस में प्रतिकर्षण बल के कारण सतह पर एकसमान (सतत) रूप से वितरित होता है।

वितरण के बाद भी यदि सतह के किसी सूक्ष्म भाग का अध्ययन किया जाए तो शेष भाग पर उपस्थित आवेश के कारण उस सूक्ष्म भाग में उपस्थित आवेश एक प्रतिकर्षण बल महसूस करता है और इसी प्रकार यदि चालक की सतह के किसी भी अल्पांश की बात करे तो शेष सभी अल्पांशो के कारण वह प्रतिकर्षण बल महसूस करता है इस प्रकार चालक की सतह पर एक बल कार्य करता है , आवेशित चालक की सतह पर इस बल का परिमाण सभी अल्पांशो द्वारा लगने वाले बलों के सदिश योग के बराबर होता है।
और इसी बल के कारण आवेशित चालक पृष्ठ बाहर की तरफ एक दाब महसूस करता है आइये आवेशित चालक की सतह पर लगने वाले बल तथा दाब का मान ज्ञात करते है।
माना एक चालक है और इस चालक के पृष्ठ पर आवेश घनत्व (एकांक क्षेत्रफल पर आवेश ) σ है। अब हम इस चालक के ठीक बाहर तथा अंदर अर्थात चालक के सापेक्ष दो सममित बिंदु लेते है इनको P1 तथा P2 नाम देते है और इन्ही बिंदुओं पर हम चर्चा करते है।
हमने ज्ञात किया था की चालक पृष्ठ के बाहर स्थित बिंदु पर विद्युत क्षेत्र की तीव्रता σ/ε0 होती है अतः P1 बिंदु पर विद्युत क्षेत्र की तीव्रता
EP1 = σ/ε0
क्योंकि चालक के भीतर आवेश शून्य होता है अर्थात पूरा आवेश चालक की सतह पर वितरित रहता है अतः चालक के भीतर सभी बिन्दुओ पर विद्युत क्षेत्र शून्य होता है।
अतः P2 बिंदु पर विद्युत क्षेत्र
EP2 = 0
अब हम इस सम्पूर्ण चालक को दो अल्पांशो में विभक्त करते है
1. एक अल्पांश AB तथा इसका क्षेत्रफल dS
2. चालक का शेष भाग अर्थात ACB भाग
माना AB अल्पांश के कारण इसके निकट बिंदुओं पर उत्पन्न विद्युत क्षेत्र की तीव्रता E1 तथा व्यक्त करते है तथा ACB अल्पांश (भाग) के द्वारा उत्पन्न विद्युत क्षेत्र की तीव्रता E2 से प्रदर्शित करते है।
अतः चालक के बाहर स्थित बिंदु P1 पर कुल विद्युत क्षेत्र की तीव्रता AB तथा ACB दोनों अल्पांश के कारण होगी
अतः
EP1 = E1 + E2
E1 तथा E2 की दिशा समान है।
P2 बिंदु पर अल्पांश के कारण विद्युत क्षेत्र परस्पर विपरीत दिशा में होंगे अतः P2 बिंदु पर विद्युत क्षेत्र की तीव्रता
EP2 = E1 – E2
चूँकि हम पढ़ चुके है की P2 बिंदु पर कुल विधुत क्षेत्र शून्य है
अतः
EP2 = 0
E1 – E2 = 0
E1 = E2
E1 + E2 = σ/ε0
E2 + E2 = σ/ε0
2E2 = σ/ε0
E2 = σ/2ε0
अतः ACB के कारण अल्पांश AB पर वैद्युत क्षेत्र की तीव्रता σ/2ε0 होगी।
यदि AB का कुल आवेश dq है तो
अल्पांश AB पर बल
dF = E2dq = (σ/2ε0 )dq
चूँकि dq = σdS
आवेश = आवेश घनत्व x क्षेत्रफल
dF = (σ/2ε0 )σdS
dF = σ2dS/2ε0
चूँकि E = σ/ε0 , σ = Eε0
dF = E2ε0dS/2
सम्पूर्ण पृष्ठ पर लगने वाला बल (कुल बल )
F = E2ε0dS/2 = σ2dS/2ε0
तथा
P = कुल बल /कुल क्षेत्रफल
P = σ2dS/2ε0 = E2ε0/2
Sbistudy

Recent Posts

Question Tag Definition in english with examples upsc ssc ias state pcs exames important topic

Question Tag Definition • A question tag is a small question at the end of a…

2 weeks ago

Translation in english grammer in hindi examples Step of Translation (अनुवाद के चरण)

Translation 1. Step of Translation (अनुवाद के चरण) • मूल वाक्य का पता करना और उसकी…

2 weeks ago

Report Writing examples in english grammer How to Write Reports explain Exercise

Report Writing • How to Write Reports • Just as no definite rules can be laid down…

2 weeks ago

Letter writing ,types and their examples in english grammer upsc state pcs class 12 10th

Letter writing • Introduction • Letter writing is an intricate task as it demands meticulous attention, still…

2 weeks ago

विश्व के महाद्वीप की भौगोलिक विशेषताएँ continents of the world and their countries in hindi features

continents of the world and their countries in hindi features विश्व के महाद्वीप की भौगोलिक…

2 weeks ago

भारत के वन्य जीव राष्ट्रीय उद्यान list in hin hindi IAS UPSC

भारत के वन्य जीव भारत में जलवायु की दृष्टि से काफी विविधता पाई जाती है,…

2 weeks ago
All Rights ReservedView Non-AMP Version
X

Headline

You can control the ways in which we improve and personalize your experience. Please choose whether you wish to allow the following:

Privacy Settings
JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now