JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now

हिंदी माध्यम नोट्स

Categories: Physics

euclidean and riemannian space in hindi यूक्लिडियन एवं रिमॉन आकाश क्या है समझाइये

यूक्लिडियन एवं रिमॉन आकाश क्या है समझाइये euclidean and riemannian space in hindi ?

प्रदिशों की मूलभूत संक्रियाऐं (FUNDAMENTAL OPERATIONS OF TENSORS)

दो या दो से अधिक समान कोटि एवं प्रारूप (rank and type) के प्रदिशों के समान पादांक या मूर्धांक वाले घटकों का योग करने पर उसी कोटि एवं प्रारूप के प्रदिश के प्राप्त होते हैं। उदाहरण के तौर पर,

प्रदिशों का योग (i) क्रम विनिमय (commutative) तथा (ii) साहचर्य associative होता है।

(ii) व्यवकलन ( Subtraction)

किसी प्रदिश के घटकों को उसी समान कोटि एवं प्ररूप के प्रदिश के समान पादांक या मूर्धांक वाले घटकों को घटाने पर समान कोटि एवं प्ररूप का प्रदिश प्राप्त होता है। उदाहरण के तौर पर,

(iii) बाह्य गुणनफल ( Outer product )

किन्हीं दो प्रदिशों का बाह्य गुणनफल सामान्य गुणनफल के समान होता है तथा परिणामी प्रदिश की कोटि दोनों प्रदिशों के कोटियों के योग के बराबर होती है । प्रदिशों का बाह्य गुणन क्रमविनिमय एवं साहचर्य होता है।

उपपत्ति : माना द्वितीय कोटि के मिश्रित प्रदिश Aiu तथा प्रथम कोटि के प्रतिचर प्रदिश Bk का बाह्य गुणन करना है तथा सिद्ध करना है कि परिणामी प्रदिश की कोटि तीन होगी।

चूँकि Aui द्वितीय कोटि का मिश्रित प्रदिश है अतः इसका रूपान्तरण समीकरण होगा-

तथा Bk प्रथम कोटि का प्रतिचर प्रदिश है अतः इसका रूपान्तरण समीकरण होगा-

अतः बाह्य गुणन प्रदिश की कोटि में वृद्धि कर देती है । परन्तु बाह्य गुणनफल का व्युत्क्रम हमेशा सत्य नहीं होता है अर्थात् यह आवश्यक नहीं है कि बाह्य गुणनफल से प्रदिश की कोटि कम की जा सकती है। अतः इस तरह से प्रदिशों का विभाजन सदैव सम्भव नहीं होता है।

(iv) प्रदिश का संकुचन (Contraction of a tensor)

यदि किसी मिश्रित प्रदिश में प्रतिचर सूचकांक एवं सहचर सूचकांक को एक समान कर दिया जाये तो परिणामी प्रदिश की कोटि दो कम हो जाती है। इसे प्रदिश का संकुचन कहते हैं।

माना एक पंचम कोटि का मिश्रित प्रदिश लेते हैं। अब एक प्रतिचर सूचकांक k सहचर सूचकांक v को एक समान कर देते हैं अर्थात् k=v तो प्रदिश , प्रदिश में परिवर्तित हो जाता है जिसकी कोटि (5 – 2 ) = 3 हो जायेगी । यह प्रदिशका संकुचन कहलाता है।

उपपत्ति : माना एक पंचम कोटि का मिश्रित प्रदिश  है। इसका रूपान्तरण समीकरण होगा।

यह समीकरण तृतीय कोटि के मिश्रित प्रदिश Biju के तुल्य है अर्थात्

जो तृतीय कोटि का मिश्रित प्रदिश है।

(v) आंतरगुणनफल (Inner product )

किन्हीं दो प्रदिशों के बाह्य गुणनफल के साथ-साथ संकुचन संक्रिया की जाय तो परिणामी प्रदिश दिये गये प्रदिशों का आंतर गुणनफल कहलाता है। अतः

आंतरगुणनफल = बाह्य गुणनफल + संकुचन

माना  क्रमशः पंचम तथा तृतीय कोटि के दो मिश्रित प्रदिश है।

अतः परिणामी छठे कोटि का प्रदिश  दिये गये प्रदिशों  का आंतर गुणनफल होगा। आंतर गुणनफल क्रमविनिमय तथा साहचर्य गुणों का पालन करता है ।

(vi) भागफल नियम ( Quotient law)

कोई अज्ञात राशि X प्रदिश है नहीं, इसका परीक्षण भागफल नियम से किया जाता है। इसके अनुसार यदि किसी अज्ञात राशि X का किसी स्वैच्छिक प्रदिश के साथ आंतर गुणनफल करने से प्रदिश प्राप्त होता है तो अज्ञात राशि X भी प्रदिश होगी। यह नियम भागफल कहलाता है।

इस नियम के अनुसार यदि  एक प्रदिश है तो X(i,j) भी प्रदिश होगा जहाँ AjB एक द्वितीय कोटि का स्वैच्छिक मिश्रित प्रदिश है।

यूक्लिडीन एवं रिमॉन आकाश (EUCLIDEAN AND RIEMANNIAN SPACE)

n-विमीय आकाश में रेखीय अल्पांश के वर्ग को द्विघात पद के रूप में लिख सकते हैं.

जहाँ गुणांक gij इन शर्तों (i) इसका सारणिक शून्य के बराबर नहीं हो अर्थात् | gij| ≠ 0, (ii) यह सममित हो अर्थात् gij = gji के साथ निर्देशांक x1 का फलन होता है तो वह आकाश रिमॉन आकाश कहलाता है और यदि दूरीक प्रदिश के सभी घटक x1 पर निर्भर नहीं करते हो वह आकाश यूक्लिडीन आकाश कहलाता है।

परन्तु लाम्बिक निर्देश तंत्र में,

अतः कार्तीय निर्देशांक तंत्र में प्रतिचर सदिश या प्रदिश तथा सहचर सदिश या प्रदिश में कोई अंतर नहीं होता है क्योंकि उनके घटक समान होते हैं।

ध्रुवीय एवं अक्षीय सदिश (POLAR AND AXIAL VECTORS)

त्रिविमीय आकाश में प्रथम कोटि के प्रतिचर प्रदिश या सहचर प्रदिश के तीन घटक होते हैं तथा वे सभी निम्न रूपान्तरण समीकरण के अनुसार एक निर्देश तंत्र से दूसरे निर्देश तंत्र में परिवर्तित होते हैं।

अतः प्रथम कोटि के प्रतिचर प्रदिश या सहचर प्रदिश साधारण सदिश के तुल्य होते हैं। अनुच्छेद (2.13) में यह सिद्ध किया गया है कि कार्तीय निर्देशांक तंत्र में प्रथम कोटि के प्रतिचर प्रदिश तथा सहचर प्रदिश में कोई अंतर नहीं होता है। अतः प्रथम कोटि के प्रदिश ध्रुवीय या साधारण या उचित (polar or ordinary or proper ) सदिश कहलाते हैं । सदिश विस्थापन (vector displacement), त्वरण (acceleration), यांत्रिक बल (mechanical force) आदि ध्रुवीय सदिश के उदाहरण हैं।

कार्तीय निर्देशांक तंत्र में किन्हीं दो सदिशों Āतथा B का सदिश गुणनफल T = A x B के द्वारा व्यक्त किया जाता है, जहाँ सदिश T के घटक Tij = AiBj – Aj Bi = – Tji (i, j = 1, 2, 3) है। अतः सदिश गुणनफल के कुल 9 घटक होते हैं। दो ध्रुवीय सदिशों के गुणनफल के ये घटक एक निर्देश तंत्र से दूसरे निर्देश तंत्र में द्वितीय कोटि के सहचर प्रदिश की भांति रूपान्तरित होते हैं। अत: सदिश T द्वितीय कोटि का सहचर प्रदिश होता है । इस प्रकार के सभी सदिशों को अक्षीय सदिश (axial vector) या छद्म सदिश ( pseudo vector) कहते हैं। अतः कोणीय वेग, कोणीय त्वरण, बलाघूर्ण आदि सभी अक्षीय सदिश या प्रदिश होते हैं।

ध्रुवीय सदिश तथा अक्षीय सदिश में मुख्य अंतर यह है कि दो ध्रुवीय सदिशों या दो अक्षीय सदिशों का अदिश गुणनफल यथार्थ अदिश होता है जो निर्देश तंत्र के व्युत्क्रमण से (अर्थात् दक्षिणावर्ती निर्देश तंत्र से वामावर्ती निर्देश तंत्र में ) अपरिवर्तित रहता है। एक अन्य अंतर और है कि ऐसे सदिशों का गुणनफल जिसमें एक सदिश ध्रुवीय तथा दूसरा अक्षीय (जैसे आयतन) हो तो व्युत्क्रमण क्रिया में निश्चर नहीं रहता है व उसका चिन्ह विपरीत हो जाता है। इस प्रकार के अदिश गुणनफल से प्राप्त अदिश छद्म अदिश ( pseudo scalar) कहलाता है।

Sbistudy

Recent Posts

मालकाना का युद्ध malkhana ka yudh kab hua tha in hindi

malkhana ka yudh kab hua tha in hindi मालकाना का युद्ध ? मालकाना के युद्ध…

4 weeks ago

कान्हड़देव तथा अलाउद्दीन खिलजी के संबंधों पर प्रकाश डालिए

राणा रतन सिंह चित्तौड़ ( 1302 ई. - 1303 ) राजस्थान के इतिहास में गुहिलवंशी…

4 weeks ago

हम्मीर देव चौहान का इतिहास क्या है ? hammir dev chauhan history in hindi explained

hammir dev chauhan history in hindi explained हम्मीर देव चौहान का इतिहास क्या है ?…

4 weeks ago

तराइन का प्रथम युद्ध कब और किसके बीच हुआ द्वितीय युद्ध Tarain battle in hindi first and second

Tarain battle in hindi first and second तराइन का प्रथम युद्ध कब और किसके बीच…

4 weeks ago

चौहानों की उत्पत्ति कैसे हुई थी ? chahamana dynasty ki utpatti kahan se hui in hindi

chahamana dynasty ki utpatti kahan se hui in hindi चौहानों की उत्पत्ति कैसे हुई थी…

1 month ago

भारत पर पहला तुर्क आक्रमण किसने किया कब हुआ first turk invaders who attacked india in hindi

first turk invaders who attacked india in hindi भारत पर पहला तुर्क आक्रमण किसने किया…

1 month ago
All Rights ReservedView Non-AMP Version
X

Headline

You can control the ways in which we improve and personalize your experience. Please choose whether you wish to allow the following:

Privacy Settings
JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now