हिंदी माध्यम नोट्स
euclidean and riemannian space in hindi यूक्लिडियन एवं रिमॉन आकाश क्या है समझाइये
यूक्लिडियन एवं रिमॉन आकाश क्या है समझाइये euclidean and riemannian space in hindi ?
प्रदिशों की मूलभूत संक्रियाऐं (FUNDAMENTAL OPERATIONS OF TENSORS)
दो या दो से अधिक समान कोटि एवं प्रारूप (rank and type) के प्रदिशों के समान पादांक या मूर्धांक वाले घटकों का योग करने पर उसी कोटि एवं प्रारूप के प्रदिश के प्राप्त होते हैं। उदाहरण के तौर पर,
प्रदिशों का योग (i) क्रम विनिमय (commutative) तथा (ii) साहचर्य associative होता है।
(ii) व्यवकलन ( Subtraction)
किसी प्रदिश के घटकों को उसी समान कोटि एवं प्ररूप के प्रदिश के समान पादांक या मूर्धांक वाले घटकों को घटाने पर समान कोटि एवं प्ररूप का प्रदिश प्राप्त होता है। उदाहरण के तौर पर,
(iii) बाह्य गुणनफल ( Outer product )
किन्हीं दो प्रदिशों का बाह्य गुणनफल सामान्य गुणनफल के समान होता है तथा परिणामी प्रदिश की कोटि दोनों प्रदिशों के कोटियों के योग के बराबर होती है । प्रदिशों का बाह्य गुणन क्रमविनिमय एवं साहचर्य होता है।
उपपत्ति : माना द्वितीय कोटि के मिश्रित प्रदिश Aiu तथा प्रथम कोटि के प्रतिचर प्रदिश Bk का बाह्य गुणन करना है तथा सिद्ध करना है कि परिणामी प्रदिश की कोटि तीन होगी।
चूँकि Aui द्वितीय कोटि का मिश्रित प्रदिश है अतः इसका रूपान्तरण समीकरण होगा-
तथा Bk प्रथम कोटि का प्रतिचर प्रदिश है अतः इसका रूपान्तरण समीकरण होगा-
अतः बाह्य गुणन प्रदिश की कोटि में वृद्धि कर देती है । परन्तु बाह्य गुणनफल का व्युत्क्रम हमेशा सत्य नहीं होता है अर्थात् यह आवश्यक नहीं है कि बाह्य गुणनफल से प्रदिश की कोटि कम की जा सकती है। अतः इस तरह से प्रदिशों का विभाजन सदैव सम्भव नहीं होता है।
(iv) प्रदिश का संकुचन (Contraction of a tensor)
यदि किसी मिश्रित प्रदिश में प्रतिचर सूचकांक एवं सहचर सूचकांक को एक समान कर दिया जाये तो परिणामी प्रदिश की कोटि दो कम हो जाती है। इसे प्रदिश का संकुचन कहते हैं।
माना एक पंचम कोटि का मिश्रित प्रदिश
उपपत्ति : माना एक पंचम कोटि का मिश्रित प्रदिश
यह समीकरण तृतीय कोटि के मिश्रित प्रदिश Biju के तुल्य है अर्थात्
जो तृतीय कोटि का मिश्रित प्रदिश है।
(v) आंतरगुणनफल (Inner product )
किन्हीं दो प्रदिशों के बाह्य गुणनफल के साथ-साथ संकुचन संक्रिया की जाय तो परिणामी प्रदिश दिये गये प्रदिशों का आंतर गुणनफल कहलाता है। अतः
आंतरगुणनफल = बाह्य गुणनफल + संकुचन
माना
अतः परिणामी छठे कोटि का प्रदिश
(vi) भागफल नियम ( Quotient law)
कोई अज्ञात राशि X प्रदिश है नहीं, इसका परीक्षण भागफल नियम से किया जाता है। इसके अनुसार यदि किसी अज्ञात राशि X का किसी स्वैच्छिक प्रदिश के साथ आंतर गुणनफल करने से प्रदिश प्राप्त होता है तो अज्ञात राशि X भी प्रदिश होगी। यह नियम भागफल कहलाता है।
इस नियम के अनुसार यदि
यूक्लिडीन एवं रिमॉन आकाश (EUCLIDEAN AND RIEMANNIAN SPACE)
n-विमीय आकाश में रेखीय अल्पांश के वर्ग को द्विघात पद के रूप में लिख सकते हैं.
जहाँ गुणांक gij इन शर्तों (i) इसका सारणिक शून्य के बराबर नहीं हो अर्थात् | gij| ≠ 0, (ii) यह सममित हो अर्थात् gij = gji के साथ निर्देशांक x1 का फलन होता है तो वह आकाश रिमॉन आकाश कहलाता है और यदि दूरीक प्रदिश के सभी घटक x1 पर निर्भर नहीं करते हो वह आकाश यूक्लिडीन आकाश कहलाता है।
परन्तु लाम्बिक निर्देश तंत्र में,
अतः कार्तीय निर्देशांक तंत्र में प्रतिचर सदिश या प्रदिश तथा सहचर सदिश या प्रदिश में कोई अंतर नहीं होता है क्योंकि उनके घटक समान होते हैं।
ध्रुवीय एवं अक्षीय सदिश (POLAR AND AXIAL VECTORS)
त्रिविमीय आकाश में प्रथम कोटि के प्रतिचर प्रदिश या सहचर प्रदिश के तीन घटक होते हैं तथा वे सभी निम्न रूपान्तरण समीकरण के अनुसार एक निर्देश तंत्र से दूसरे निर्देश तंत्र में परिवर्तित होते हैं।
अतः प्रथम कोटि के प्रतिचर प्रदिश या सहचर प्रदिश साधारण सदिश के तुल्य होते हैं। अनुच्छेद (2.13) में यह सिद्ध किया गया है कि कार्तीय निर्देशांक तंत्र में प्रथम कोटि के प्रतिचर प्रदिश तथा सहचर प्रदिश में कोई अंतर नहीं होता है। अतः प्रथम कोटि के प्रदिश ध्रुवीय या साधारण या उचित (polar or ordinary or proper ) सदिश कहलाते हैं । सदिश विस्थापन (vector displacement), त्वरण (acceleration), यांत्रिक बल (mechanical force) आदि ध्रुवीय सदिश के उदाहरण हैं।
कार्तीय निर्देशांक तंत्र में किन्हीं दो सदिशों Āतथा B का सदिश गुणनफल T = A x B के द्वारा व्यक्त किया जाता है, जहाँ सदिश T के घटक Tij = AiBj – Aj Bi = – Tji (i, j = 1, 2, 3) है। अतः सदिश गुणनफल के कुल 9 घटक होते हैं। दो ध्रुवीय सदिशों के गुणनफल के ये घटक एक निर्देश तंत्र से दूसरे निर्देश तंत्र में द्वितीय कोटि के सहचर प्रदिश की भांति रूपान्तरित होते हैं। अत: सदिश T द्वितीय कोटि का सहचर प्रदिश होता है । इस प्रकार के सभी सदिशों को अक्षीय सदिश (axial vector) या छद्म सदिश ( pseudo vector) कहते हैं। अतः कोणीय वेग, कोणीय त्वरण, बलाघूर्ण आदि सभी अक्षीय सदिश या प्रदिश होते हैं।
ध्रुवीय सदिश तथा अक्षीय सदिश में मुख्य अंतर यह है कि दो ध्रुवीय सदिशों या दो अक्षीय सदिशों का अदिश गुणनफल यथार्थ अदिश होता है जो निर्देश तंत्र के व्युत्क्रमण से (अर्थात् दक्षिणावर्ती निर्देश तंत्र से वामावर्ती निर्देश तंत्र में ) अपरिवर्तित रहता है। एक अन्य अंतर और है कि ऐसे सदिशों का गुणनफल जिसमें एक सदिश ध्रुवीय तथा दूसरा अक्षीय (जैसे आयतन) हो तो व्युत्क्रमण क्रिया में निश्चर नहीं रहता है व उसका चिन्ह विपरीत हो जाता है। इस प्रकार के अदिश गुणनफल से प्राप्त अदिश छद्म अदिश ( pseudo scalar) कहलाता है।
Recent Posts
Question Tag Definition in english with examples upsc ssc ias state pcs exames important topic
Question Tag Definition • A question tag is a small question at the end of a…
Translation in english grammer in hindi examples Step of Translation (अनुवाद के चरण)
Translation 1. Step of Translation (अनुवाद के चरण) • मूल वाक्य का पता करना और उसकी…
Report Writing examples in english grammer How to Write Reports explain Exercise
Report Writing • How to Write Reports • Just as no definite rules can be laid down…
Letter writing ,types and their examples in english grammer upsc state pcs class 12 10th
Letter writing • Introduction • Letter writing is an intricate task as it demands meticulous attention, still…
विश्व के महाद्वीप की भौगोलिक विशेषताएँ continents of the world and their countries in hindi features
continents of the world and their countries in hindi features विश्व के महाद्वीप की भौगोलिक…
भारत के वन्य जीव राष्ट्रीय उद्यान list in hin hindi IAS UPSC
भारत के वन्य जीव भारत में जलवायु की दृष्टि से काफी विविधता पाई जाती है,…