हिंदी माध्यम नोट्स
विद्युत द्विध्रुव के कारण उसकी निरक्ष रेखा या विषुवतीय रेखा पर स्थित बिंदु पर विद्युत क्षेत्र electric field
(electric field at point on the equatorial line of an electric dipole ) विद्युत द्विध्रुव के कारण उसकी निरक्ष रेखा या विषुवतीय रेखा (तल) पर स्थित बिंदु पर विद्युत क्षेत्र :-
बिंदु P से दोनों आवेशों की दुरी समान होगी और यह दूसरी (√r2 + a2) होगी।
+q आवेश के कारण बिन्दु P पर विद्युत क्षेत्र की तीव्रता
इसकी दिशा BP के अनुदिश होगी।
-q आवेश के कारण बिन्दु P पर विद्युत क्षेत्र की तीव्रता
इसकी दिशा PA के अनुदिश होगी।
दोनों सूत्रों से यह स्पष्ट है की दोनों आवेशों के कारण P बिंदु पर विद्युत क्षेत्र की तीव्रता का मान बराबर होता है किन्तु दोनों की दिशा भिन्न भिन्न है।
E+q = E-q = E
चित्र से स्पष्ट है की E+q तथा E-q के दो प्रकार के घटक बनते है , एक घटक बनता है अक्षीय रेखा के लंबवत तथा दूसरा घटक अक्षीय रेखा के अनुदिश।
अक्षीय रेखा के लंबवत बने घटक E+q Sinθ व E-q Sinθ , परिमाण में बराबर है किन्तु दिशा में विपरीत है अतः ये एक दूसरे को निरस्त कर देते है।
अक्षीय रेखा के अनुदिश घटक E+q Cosθ व E-q Cosθ दोनों एक ही दिशा में अतः ये दोनों जुड़ जाते है।
अतः परिणामी विद्युत क्षेत्र की तीव्रता
Cosθ का मान रखने पर
मान रखने पर परिणामी विद्युत क्षेत्र की तीव्रता
चूँकि हम जानते है की 2qa = p (विद्युत द्विध्रुव आघूर्ण) अतः इसका मान रखने पर
माना a का मान r की तुलना में अत्यन्त कम है अतः r2 की तुलना में a2 का मान नगण्य मानकर छोड़ने पर
अक्ष पर स्थित बिंदु पर विद्युत क्षेत्र की तीव्रता उतनी ही दूरी पर निरक्षीय बिंदु पर विद्युत क्षेत्र की तीव्रता की दो दोगुनी होती है।
(Eaxial) = 2(Eequatorial)
निरक्ष पर स्थित बिंदु पर विद्युत क्षेत्र की दिशा विद्युत आघूर्ण के विपरीत दिशा में होती है।
निरक्षीय स्थिति में विद्युत द्विध्रुव के कारण उत्पन्न वैद्युत क्षेत्र की तीव्रता : विद्युत द्विध्रुव की निरक्षीय स्थिति में r दूरी पर स्थित बिंदु P पर विद्युत क्षेत्र की तीव्रता ज्ञात करनी है। बिंदु P से दोनों आवेशो की दूरियाँ समान √(r2 + l2) होंगी अत: P पर +q आवेश के कारण उत्पन्न विद्युत क्षेत्र की तीव्रता का परिमाण निम्न सूत्र द्वारा दिया जाता है –
E1 = q/4πε0(r2 + l2)
तथा -q आवेश के कारण P पर उत्पन्न विद्युत क्षेत्र की तीव्रता का परिमाण –
E2 = q/4πε0(r2 + l2)
अत: इस तरह |E1| = |E2|
बिंदु P पर परिणामी विद्युत क्षेत्र की तीव्रता –
E = E1 + E2
समान्तर चतुर्भुज के नियम से परिणामी विद्युत क्षेत्र की तीव्रता का परिमाण –
E = √(E12 + E22 + 2E1E2cos2θ)
चूँकि |E1| = |E2|
E = √(E12 + E12 + 2E1E1cos2θ)
E = √(2E12 + 2E12cos2θ)
E = √(2E12(1 + cos2θ)
E = E1√2(1 + 2cos2θ – 1)
E = √2×2 cos2θ
E = 2E1cosθ
चूँकि चित्र से cosθ = l/√(r2 + l2)
E1 व cosθ का मान रखने पर –
E = 2 x q/4πε0(r2 + l2) x l/√(r2 + l2)
हल करने पर
E = q.2l/ 4πε0(r2 + l2)3/2
या
चूँकि q.2l = p
E = p/ 4πε0(r2 + l2)3/2
चित्र में E की दिशा द्विध्रुव की अक्ष के समान्तर होगी। चूँकि द्विध्रुव आघूर्ण p की दिशा ऋण आवेश से धन आवेश की ओर होती है अत: विद्युत क्षेत्र E एवं विद्युत द्विध्रुव p की दिशाएँ परस्पर विपरीत होंगी।
दीर्घ परास की दूरियों के लिए r>> l
अत: r2 >> l2
अत: l2 को r2 की तुलना में नगण्य मानकर छोड़ने पर –
E = p/ 4πε0r3
याद रखे कि विद्युत क्षेत्र E एवं विद्युत द्विध्रुव p की दिशा विपरीत होगी।
Recent Posts
Question Tag Definition in english with examples upsc ssc ias state pcs exames important topic
Question Tag Definition • A question tag is a small question at the end of a…
Translation in english grammer in hindi examples Step of Translation (अनुवाद के चरण)
Translation 1. Step of Translation (अनुवाद के चरण) • मूल वाक्य का पता करना और उसकी…
Report Writing examples in english grammer How to Write Reports explain Exercise
Report Writing • How to Write Reports • Just as no definite rules can be laid down…
Letter writing ,types and their examples in english grammer upsc state pcs class 12 10th
Letter writing • Introduction • Letter writing is an intricate task as it demands meticulous attention, still…
विश्व के महाद्वीप की भौगोलिक विशेषताएँ continents of the world and their countries in hindi features
continents of the world and their countries in hindi features विश्व के महाद्वीप की भौगोलिक…
भारत के वन्य जीव राष्ट्रीय उद्यान list in hin hindi IAS UPSC
भारत के वन्य जीव भारत में जलवायु की दृष्टि से काफी विविधता पाई जाती है,…