हिंदी माध्यम नोट्स
अभिक्रिया के वेग पर ताप का क्या प्रभाव पड़ता है Effect of Temperature on Reaction Rate in hindi
Effect of Temperature on Reaction Rate in hindi अभिक्रिया के वेग पर ताप का क्या प्रभाव पड़ता है ?
रासायनिक बलगतिकी की प्रायोगिक विधियां (EXPERIMENTAL METHODS OF CHEMICAL KINETICS)
रासायनिक बलगतिकी में अभिक्रियाओं के वेग को ज्ञात करने की कई प्रायोगिक विधियां हैं जिनमें से कछ महत्वपूर्ण विधियों का विवरण नीचे दिया जा रहा है:
- चालकतामिति (Conductometry)
यह विधि इस सिद्धान्त पर आधारित है कि किसी अभिक्रिया मिश्रण की विद्युत चालकता का मान उसमे विद्यमान आयनों की सान्द्रता पर निर्भर करता है। अभिक्रिया की प्रगति के समय यदि अभिक्रिया मिश्रण में। आयनों की संख्या में कमी हो रही होगी तो उसकी चालकता का मान कम होता जाएगा और इसके विपरीत यदि अभिक्रिया मिश्रण में आयनों की संख्या में वृद्धि हो रही होगी तो उसकी विद्युत् चालकता का मान बढ़ता जाएगा। अभिक्रिया मिश्रण को किसी स्थिरतापी (Thermostat) के द्वारा इच्छित ताप पर स्थिर करके समय के विभिन्न अन्तरालों पर चालकता ब्रिज (Conductivity bridge) (चित्र 7.13) की सहायता से। उसकी चालकता का मान ज्ञात कर लेते हैं। उदाहरणार्थ, अभिक्रिया ।
CH3COOC2H5 + NaOH C2H5OH + CH3COONa
में OH आयन ऐसीटेट CH3COO आयनों द्वारा प्रतिस्थापित हो रहे हैं अतः जैसे-जैसे अभिक्रिया की प्रगति होती जाएगी अभिक्रिया मिश्रण की चालकता का मान कम होता जाएगा। इसके विपरीत निम्न अभिक्रिया
C6H5CO- CH2Br + C5H5N – C6H5 – CO – CH2NC5H5 + Br
में क्रियाकारक उदासीन अणु हैं जबकि उत्पाद आयन हैं अतः जैसे-जैसे अभिक्रिया आगे बढ़ती जाएगी अभिक्रिया मिश्रण में आयनों की सान्द्रता बढ़ती जाएगी फलस्वरूप चालकता का मान बढ़ता जाएगा। चालकता का मान सान्द्रता के समानुपाती ही हो इसके लिए जल जैसा उच्च डाइइलेक्ट्रिक स्थिरांक वाला विलायक लिया जाता है।
अतः यदि बिल्कुल प्रारम्भ में (t= 0) चालकता Co, समय t पर चालकता C व अनन्त (यानि कि अगले दिन) समय t पर चालकता C ज्ञात हों तो ।
X« (CO –Ct)
a-X(Ct -C)
a (Co -C)
इस प्रकार a तथा (a-X) के मान मूल गतिकीय समीकरण में रखकर वेग स्थिरांक k का मान ज्ञात किया जा सकता है। यदि C0 – CT/CT – C को t के विरुद्ध आलेखित किया जाए तो उस ग्राफ का स्लोप वेग स्थिरांक k के बराबर होगा।
(2) विभवमिति (Potentiometry) – इस विधि द्वारा तीव्र अभिक्रियाओं के गतिक अध्ययन किए जाते हैं। इस विधि में एक विद्युत् सेल में अभिक्रिया मिश्रण डालकर उसमें दो इलेक्ट्रोड डाले जाते हैं। इनमें से एक इलेक्ट्रोड ऐसी होती है जिसका विभव सान्द्रता से परिवर्तित होता है, इसे “सचक इलेक्टोड” (indicator electrode) कहते है। सेल की दूसरी इलेक्ट्रोड का विभव स्थिर रहता है जिसे “सन्दर्भ इलेक्टोड” (reference electrode) कहते है। अतः सेल का EMF वस्तुतः उस सूचक इलेक्ट्रोड का विभव होता है जो सान्द्रता के अनुरूप होता है। समय के विभिन्न अन्तराल पर सेल का EMF ज्ञात करते हैं और EMF तथा समय। के मध्य ग्राफ खीचते है। ग्राफ का स्लोप वेग स्थिरांक k के बराबर होता है। फीनॉल के ब्रोमीनीकरण का अध्ययन इस विधि द्वारा किया जाता है।
(3) प्रकाशिक विधियां (Optical Methods) इसके अन्तर्गत दो विधियों का अध्ययन किया जाएगा :
(i) ध्रुवणमापी (Polarimetry) इस विधि द्वारा प्रकाशिक सक्रिय (optically active) पदार्थों की गतिकी का अध्ययन किया जाता है। ये यौगिक धूवित प्रकाश के तल को दाएं या बाएं घुमा देते हैं। दाएं घुमाने वाले यौगिक दक्षिणध्रुवणघूर्णक (dextrorotatory) होते हैं जबकि बाई ओर घुमाने वाले यौगिक वामध्रुवणघूर्णक (leavorotatory) कहलाते हैं। किसी यौगिक का विशिष्ट घूर्णन निम्न सूत्र द्वारा परिकलित किया जा सकता है:
[a]t = a/l.C …… …..(51)
जहां a = प्रेक्षित घूर्णन कोण, 2 = प्रयुक्त प्रकाश की तरंग-दैर्ध्य, 1 = विलयन में प्रकाश द्वारा तय की गई दूरी (dm में) तथा C = विलयन की सान्द्रता (gm/ml में)
ध्रुवणमापी (चित्र 7.14) में दो निकोल प्रिज्म होते हैं P तथा A जो क्रमशः ध्रुवक (polariser) तथा विश्लेषक (analyser) होते हैं और उनके मध्य ! dm लम्बी सैम्पल ट्यूब T होती है जिसमें पदार्थ का विलयन भरा रहता है। प्रकाश स्रोत S से एकवर्णी प्रकाश ध्रुवक P से गुजरकर धुवित हो जाता है। ध्रुवित प्रकाश जब प्रकाशिक सक्रिय पदार्थ के विलयन से गुजरता है तो उसका तल दाएं या बाएं घूम जाता है। प्रकाश का तल किस दिशा में तथा कितने डिग्री कोण पर घूमा, यह बात उससे ज्ञात होती है कि आइपीस E से प्रकाश स्रोत देखने के लिए विश्लेषक को किस दिशा में और कितने डिग्री घुमाया। ।
शर्करा के प्रतीपन अभिक्रिया का अध्ययन इस विधि द्वारा किया जाता है। समय के अलग-अलग अन्तराल पर विशिष्ट घूर्णन का मान ज्ञात किया जाता है और फिर निम्न सूत्र द्वारा वेग स्थिरांक k का परिकलन कर लिया जाता है
K = 2.303/t log r0 – r/rt – r ………. ….(52)
जहां ro = प्रारम्भिक विशिष्ट घूर्णन, rt = t समय पर विशिष्ट घूर्णन तथा
R = अभिक्रिया समाप्ति पर (अगले दिन) विशिष्ट घूर्णन।
(ii) स्पेक्ट्रोफोटोमीट्रिक विधि (Spectrophotometric Method) जब कोई प्रकाश पुंज किसी पदार्थ से टकराता है तो प्रकाश का कुछ भाग उस पदार्थ द्वारा अवशोषित हो जाता है जबकि शेष भाग निर्गमित, विवर्तित अथवा प्रकीर्णित हो जाता है। प्रकाश का कितना भाग अवशोषित होता है यह पदार्थ में विद्यमान अणुओं की संरचना और सान्द्रता पर निर्भर करता है और यह बीयर लैम्बर्ट के नियम का पालन करता है जिसके अनुसार,
I = I0, e-CI
Log I0/I = Cl=D या A या E …………….. ..(53)
जहां Io = आपतित प्रकाश की तीव्रता, I = निर्गमित प्रकाश की तीव्रता,C= पदार्थ की मोलर सान्द्रता, 1 = cm में पदार्थ की मोटाई जिसमें से प्रकाश गुजरता है. E = मोलर विलोप गुणांक (molar extinction coefficient), D = प्रकाशिक घनत्व (optical density), A = अवशोषकता (Absorbance), E= विलोपन।
स्पेक्ट्रोफोटोमीट्रिक विधि में किसी विशेष तरंग दैर्घ्य के प्रकाशिक घनत्व को समय के विभिन्न अन्तराला। के साथ ज्ञात किया जाता है। इस Dव । के मध्य का ग्राफ अंशांकन वक्र (Calibration curve) कहलाता। है। इस वक्र की सहायता से अज्ञात सान्द्रता वाले क्रियाकारक की सान्द्रता को समय के विभिन्न अन्तरालो पर ज्ञात किया जा सकता है। उदाहरणार्थ, मेथिल ऐसीटेट के जल-अपघटन की क्रिया का अध्ययन इस विधि। द्वारा 332 nm पर किया जा सकता है। निम्न सूत्र द्वारा वेग स्थिरांक का परिकलन किया जाता है
K = 2.303/t log D – DO/D – DT
जहा Do = प्रारम्भ में (T = 0 पर) प्रकाशिक घनत्व, D=t समय पर प्रकाशिक घनत्व और D = | अनन्त समय या अभिक्रिया की समाप्ति पर प्रकाशिक घनत्व।
रासायनिक बलगतिकी के सिद्धान्त (THEORIES OF CHEMICAL KINETICS)
रासायनिक बलगतिकी के अध्ययन में कई सिद्धान्तों को उपयोग में लाया जाता है, उनमें से कुछ प्रमुख सिद्धान्त निम्न हैं :
- अभिक्रिया वेग पर ताप का प्रभाव या आहीनियस सिद्धान्त (Effect of Temperature on Reaction Rate or Arrhenius Theory) : अभिक्रियाओं के वेग पर ताप का अत्यधिक प्रभाव पड़ता है। एक सामान्य-सा अवलोकन यह रहा है। कि ताप के 10°C की वृद्धि से अभिक्रिया वेग का मान 2-3 गुना अधिक हो जाता है। ताप के इस प्रभाव को तापमान गुणांक (temperature coefficient) द्वारा व्यक्त किया जाता है। 10°C ताप के अन्तर पर वेग स्थिरांकों के अनुपात को तापमान गुणांक कहा जाता है। अतः यदि C ताप पर किसी अभिक्रिया का वेग स्थिरांक k, हो और उससे 10°C अधिक ताप अर्थात् (1+ 10)°C पर उसका वेग स्थिरांक k+10 हो तो उस अभिक्रिया के लिए तापमान गुणांक
=kt +10/kt = 2-3 ….(54)
तापमान गुणांक का मान सदैव ही 2-3 नहीं होता, कभी इसका मान काफी उच्च होता है, उदाहरणार्थ,
(COOK)2+ Br2 – 2CO2 + 2KBr; ताप गुणांक =6
(COOK)2 + I2→ 2CO2 + 2KI; ताप गुणांक = 7.2
और कभी तापमान गुणांक का मान 1 से भी कम होता है, उदाहरणार्थ,
2NO +02– 2NO2; ताप गुणांक -1
लेकिन ऐसे कुछ अपवादों को छोड़कर सामान्यतया तापमान गुणांक का मान 2 से 3 के बीच होता है। तापमान में मात्र 10°C की वृद्धि से अभिक्रिया के वेग में दो से तीन गुणा वृद्धि का होना एक आश्चर्यजनक तथ्य है जिसकी व्याख्या अणुओं के संघट्टन सिद्धान्त के आधार पर सम्भव नहीं है। संघट्टन सिद्धान्त के अनुसार, ताप वृद्धि से अणुओं के मध्य टक्करों की गति बढ़ती है जिससे अभिक्रिया का वेग बढ़ जाता है। लोकन संघट्टन सिद्धान्त के आधार पर यदि परिकलन किया जाए तो 10°C ताप वृद्धि से अभिक्रिया का वेग 2-3% तक बढ़ना चाहिए जबकि वास्तव में यह 200-300% तक बढ़ जाता है। अतः इसके लिए आहीनियस का सिद्धान्त दिया गया। आहीनियस का सिद्धान्त यह कहता है कि “किसी अभिक्रिया का ताप बढ़ाने पर उसके बेग में चरघातांकी बृद्धि (exponential increase) होती है।” उन्होंने वाण्ट हॉफ समीकरण
D In/dt = E/RT2 ……………(55)
को हल करके निम्न समीकरण दिया जिसे आहीनियस समीकरण कहा जाता है :
k=Ae ERT
आहानियस सिद्धान्त की संकल्पनाए (Postulates of Arrhenius Theory) आहीनियस सिद्धान्त की। प्रमुख संकल्पनाएं निम्न हैं:
- समस्त क्रियाकारी अणुओं की ऊर्जा समान नहीं होती, कुछ अणु कम ऊर्जा वाले होते हैं तो कुछ अणु उच्च ऊर्जा वाले होते हैं।
(ii) केवल उन्हीं अणुओं की टक्करों से उत्पाद बनते हैं जो ऊर्जा की एक निश्चित मात्रा से उच्च ऊर्जा वाले होते हैं। ये अणु सक्रिय अणु (active molecules) कहलाते हैं।
(iii) अणुओं की उस निश्चित न्यूनतम ऊर्जा को सक्रियण ऊर्जा कहते हैं, जिससे उच्च ऊर्जा होने पर ही अणु टकराकर उत्पाद बनाते हैं।
(iv) अणु परस्पर टक्करों से ही ऊर्जा प्राप्त करके सक्रियण ऊर्जा के स्तर तक पहुंचते हैं। ।
(v) सक्रिय अणुओं की संख्या जितनी अधिक होगी, अभिक्रिया का वेग उतना ही अधिक होगा। (vi) किसी अभिक्रिया के लिए सक्रियण ऊर्जा का मान जितना कम होगा, उसमें सक्रिय अणुओं की संख्या उतनी ही अधिक होगी।
(vii) ताप बढ़ाने पर सक्रिय अणुओं की संख्या में बहुत अधिक वृद्धि होती है। ।
- सक्रिय अणु परस्पर टकराकर उच्च ऊर्जा युक्त सक्रियित संकुल बनाते हैं, जो ऊर्जा मुक्त करके उत्पाद में परिवर्तित हो जाता है।
(ix) सक्रिय अणु तथा सामान्य अणुओं के मध्य एक साम्य स्थापित हो जाता है।
अभिक्रियाओं के वेग, उनकी ताप पर निर्भरता आदि को समझाने के लिए कई सिद्धान्त दिए गए जिनमें संघट्टवाद या टक्करों के सिद्धान्त एवं परम वेग या संक्रमण अवस्था सिद्धान्त का उल्लेख किया जा सकता है।
Recent Posts
Question Tag Definition in english with examples upsc ssc ias state pcs exames important topic
Question Tag Definition • A question tag is a small question at the end of a…
Translation in english grammer in hindi examples Step of Translation (अनुवाद के चरण)
Translation 1. Step of Translation (अनुवाद के चरण) • मूल वाक्य का पता करना और उसकी…
Report Writing examples in english grammer How to Write Reports explain Exercise
Report Writing • How to Write Reports • Just as no definite rules can be laid down…
Letter writing ,types and their examples in english grammer upsc state pcs class 12 10th
Letter writing • Introduction • Letter writing is an intricate task as it demands meticulous attention, still…
विश्व के महाद्वीप की भौगोलिक विशेषताएँ continents of the world and their countries in hindi features
continents of the world and their countries in hindi features विश्व के महाद्वीप की भौगोलिक…
भारत के वन्य जीव राष्ट्रीय उद्यान list in hin hindi IAS UPSC
भारत के वन्य जीव भारत में जलवायु की दृष्टि से काफी विविधता पाई जाती है,…