JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now

हिंदी माध्यम नोट्स

स्थूल निकायों के मध्य ऊर्जा वितरण क्या है , Distribution of Energy between Macroscopic Systems in hindi

Distribution of Energy between Macroscopic Systems in hindi ?

स्थूल निकायों के मध्य ऊर्जा वितरण (Distribution of Energy between Macroscopic Systems)
किन्हीं दो निकायों के बीच ऊर्जा के वितरण का अध्ययन करने के लिए माना दो निकायों A व A’ में ऊर्जा के मान क्रमश: E व E ́ हैं। सुविधा की दृष्टि से निकाय A की ऊर्जा E को ऊर्जा अल्पांश δE परिमाण के अन्तरालों में विभाजित करते हैं। इन ऊर्जा अन्तरालों δE का परिमाण इतना होना चाहिए कि इस अन्तराल में कई ऊर्जा स्तर या सूक्ष्म अवस्थाऐं आ जायें। (क्वान्टम यान्त्रिकी के अनुसार ऊर्जा अन्तरालों एवं ऊर्जा स्तरों को विविक्त माना गया है)।
अब यदि दोनों निकाय परस्पर ऊष्मारोधित नहीं है, ऊर्जा का विनिमय कर सकते हैं तथा इनके बाह्य प्राचल नियत हैं तो इनके मध्य केवल ऊष्मा का विनिमय होता है । यद्यपि दोनों निकायों A व A ́ की ऊर्जा नियत नहीं होती है परन्तु इसके द्वारा बने संयुक्त निकाय A* की कुल ऊर्जा विलगित ( isolated) होने के कारण नियत रहती है। अतः
E + E’ = नियंताक E*    ….(1)
अब माना कि निकाय A व A’ परस्पर साम्यावस्था में हैं अर्थात् संयुक्त निकाय भी साम्यावस्था में है । संयुक्त निकाय के समुच्चय, चित्र (1.3.1) में, A निकायों की ऊर्जा E के सम्भावित मान वृहत परास में हो सकते हैं परन्तु सभी मानों के अभिगम्य (accessible) होने की प्रायिकता भिन्न-भिन्न होती है। यदि निकाय A की ऊर्जा E है (यथार्थतः ऊर्जा E एवं E + δE के मध्य है, जहाँ SE अत्यल्प है) तो निकाय A’ की ऊर्जा होगी।
Ε’ = E*– E   …..(2)
समीकरण (2) से स्पष्ट है कि निकाय A व A’ तथा इनके संयुक्त निकाय A* की अभिगम्य अवस्थाओं की संख्या केवल एक प्राचल E पर निर्भर करती है।

माना जब निकाय A की ऊर्जा E व E + δE के मध्य है तो संयुक्त निकाय A* के लिए अभिगम्य अवस्थाओं की संख्या Ω* (E) है। समान पूर्व प्रायिकता ( equal a priori probability) के सिद्धान्त के अनुसार, जब  कोई निकाय साम्यावस्था में है तो निकाय की सभी अभिगम्य अवस्थाओं में से किसी में भी निकाय के पाये जाने की प्रायिकता समान होती है। अतः इस परिकल्पना से निष्कर्ष निकलता है कि निकाय A की ऊर्जा E व E + δE के मध्य होने की अवस्था के लिए संयुक्त निकाय A* की प्रायिकता P(E) संयुक्त निकाय के अभिगम्य  सूक्ष्म अवस्थाओं की संख्या Ω* (E) के अनुक्रमानुपाती होती है।

अत:

P(E) = C Ω* (E)  ……………….(3)

जहाँ C एक अनुक्रमानुपाती नियतांक है तो ऊर्जा E पर निर्भर नहीं करता है परन्तु यह संयुक्त निकाय की कुल अभिगम्य अवस्थाओं के व्युत्क्रम को व्यक्त करता है।

माना निकायों A व A ́ के लिए अभिगम्य अवस्थाओं की संख्या क्रमश: Ω (E) तथा Ω’ (E) हैं। चूँकि निकाय A की प्रत्येक सम्भावित अवस्था दूसरे निकाय A’ की प्रत्येक सम्भावित अवस्था से संयोजित होकर संयुक्त निकाय A* की एक भिन्न अवस्था प्राप्त होती है। अतएव प्रायिकता के सिद्धान्त के अनुसार

Ω*(E) = Ω(E) Ω'(E’)   ……..(4)

 

सम्भावित अवस्थाओं की संख्या 2(E) की E के साथ परिवर्तनशीलता को दर्शाने के लिए निकाय A व A’ के लिए आलेख उदाहरणार्थ आलेख चित्र (1.4.1) व (1.4.2) में दिये गये हैं।

इनमें ऊर्जा के सम्भावित मान ( स्वेच्छ इकाइयों में) दिये गये हैं। माना किसी विशेष अवस्था में A व A’ से बने संयुक्त निकाय A* की ऊर्जा 15 है। सारिणी 1 में सम्भावित अवस्थाओं की संख्याओं की ऊर्जा E पर निर्भरता से दर्शाया गया है।

साधारणतया निकायों में कणों की संख्या अत्यधिक ( 1020 कोटि की होती है। इस कारण से इनकी स्वातन्त्र्य कोटियों (degrees of freedom) की संख्या भी अत्यधिक होती है। (यदि एक कण की स्वातन्त्र्य कोटियों की संख्याfहै तो निकाय की कुल स्वातन्त्र्य कोटियाँ fN हो जायेंगी । )

अब यदि निकाय A की ऊर्जा E में वृद्धि होती है तो उसकी प्रति स्वान्तन्त्र्य कोटि ऊर्जा वृद्धि अत्यल्प होती है परन्तु निकाय में स्वातन्त्र्य कोटियों की संख्या अत्यधिक होने के कारण निकाय की सम्भावित सूक्ष्म अवस्थाओं की संख्या में वृहद वृद्धि होती है। इस कारण से यह पाया गया है कि Ω(E) ऊर्जा E का एक द्रुततः वर्धमान फलन (rapidly increasing function) होता है। चूँकि संयुक्त निकाय की कुल ऊर्जा नियत रहती है इसलिए जब ऊर्जा E में वृद्धि होती है तो निकाय A’ की ऊर्जा E’ = E* – E में ह्रास होता है। इसके परिणामस्वरूप जब Ω(E) द्रुततः वर्धमान फलन होता है तो उस स्थिति में निकाय A’ का फलन Ω’ (E’) द्रुतत: ह्रासमान फलन ( rapidly decreasing function) होता है। निकाय A की ऊर्जा E होने के लिये संयुक्त निकाय A* प्रायिकता P(E) इन दोनों फलनों का गुणनफल होता है इस कारण से P (E) ऊर्जा E के एक विशिष्ट मान (specific value ) E पर तीक्ष्ण वक्र (sharp curve), चित्र (1.4.3 ) के अनुसार उच्चिष्ठ दर्शायेगा। इस वक्र की चौड़ाई △E विशिष्ट ऊर्जा E की तुलना में नगण्य होती है। अत: P(E) एक द्रुतत: परिवर्ती फलन (rapidly varying function ) होता है।

P(E) के अध्ययन की तुलना में In P (E) का अध्ययन ज्यादा सुविधाजनक होता है क्योंकि In P (E) फलन मंद रूप से परिवर्ती फलन (slowly varying function) होता है, चित्र (1.4.4)। अतः समीकरण (5) के दोनों ओर का लोगेरिथम लेने पर

 

(i) ताप की परिभाषा : समीकरण ( 10 ) से प्राचल β की विमा ऊर्जा के व्युत्क्रम के समतुल्य आती है। इस कारण से β के व्युत्क्रम को किसी धनात्मक नियतांक k के रूप में व्यक्त कर सकते हैं जिसकी विमा ऊर्जा की विमा के तुल्य होती है β और k के परिमाण को स्वेच्छानुसार निम्न सम्बन्ध द्वारा चयनित किया जाता है:

…..(12)

जहाँ विमा रहित (dimensionless ) प्राचल T ऊर्जा के परिमाण को k के गुणकों (multiplier ) के रूप म व्यक्त करता है। इस नये प्राचल को विचाराधीन निकाय का परम ताप (absolute temperature) कहते हैं तथा

नियतांक k को बोल्ट्जमान नियतांक (Boltzmann constant) कहते हैं।

(ii) एन्ट्रॉपी (Entropy) की परिभाषा: समीकरण ( 10 ) व (12) से ताप T को In Ω(E) के पदों में व्यक्त

कर सकते हैं।

S को निकाय की एन्ट्रॉपी कहते हैं । इस परिभाषा से S की विमा k अर्थात् ऊर्जा की विमा के तुल्य होती है। अतः विचाराधीन निकाय की एन्ट्रॉपी उसमें अभिगम्य सूक्ष्म अवस्थाओं Ω(E) के लोगेरिथ्म ( logarithm) के परिमाण को नापती है।

अर्थात् अधिकतम कुल एन्ट्रोपी की अवस्था अधिकतम प्रायिकता की अवस्था होती है। उपरोक्त प्रतिबन्ध तभी यथार्थ होता है जब समीकरण (9) सन्तुष्ट हो अर्थात्

T = T′                  ….(17)

इस विवेचन से स्पष्ट होता है कि निकाय A की ऊर्जा E संयुक्त निकाय में इस प्रकार समजित होती है कि विलगित संयुक्त निकाय A* की एन्ट्रॉपी अधिकतम हो जाये तथा निकाय A* में ऊर्जा का वितरण अधिकतम सम्भावित सूक्ष्म अवस्थाओं में हो जाये, दूसरे शब्दों में, निकाय अपनी अधिकतम यादृच्छिक अवस्था (most radom state) में आ जाता है।

 ऊष्मीय साम्यावस्था की ओर उपगमन (An Approach to Thermal Equilibrium)

पिछले खण्ड (1.4) के अध्ययन से यह ज्ञात होता है कि निकाय A में ऊर्जा E की प्रायिकता ऊर्जा E = पर अधिकतम होती है अर्थात् साम्यावस्था पर निकाय की ऊर्जा E = E के तथा दूसरे निकाय A ́ की ऊर्जा में E’ = (E* -E) क अति निकट होती है। अतः ऊष्मीय सम्पर्क ( thermal contact) की स्थिति में निकायों की माध्य ऊर्जाऐं सदैव क्रमशः Ē व E’ के बराबर होनी चाहिये अर्थात्

अब ऐसी अवस्था पर विचार करते हैं जिसमें निकाय A व A ́ प्रारम्भ में अलग-अलग साम्यावस्था में है और परस्पर विलगित हैं। इनकी माध्य ऊर्जाऐं क्रमश: Ei व Ei‘ है। अब दोनों निकायों को ऊष्मीय सम्पर्क में रखते हैं जिससे इनके मध्य परस्पर ऊर्जा विनिमय होता है। इन निकायों की ऊर्जा में परिवर्तन इस प्रकार होता है कि प्रायिकता अधिकतम हो जाये। अन्तिम अवस्था पर पहुँचने पर माना उनकी माध्य ऊर्जाऐं Ef तथा Ef हो जाती हैं। अतः साम्यावस्था पर

….(2)

ऊष्मीय साम्यावस्था पर खण्ड (1.4) के समीकरण (9) से दोनों निकायों के B प्राचल भी परस्पर बराबर हो जाते

पिछले खण्ड के समीकरण ( 15 ) से साम्यावस्था पर दोनों निकायों की एन्ट्रॉपियों का योग होता है।

जहाँ प्रारम्भिक एवं अन्तिम अवस्थाओं में निकायों की ऐन्ट्रॉपियों का अन्तर

निकाय A व A’ जब परस्पर ऊर्जा विनिमय कर साम्यावस्था पर पहुँचते हैं जब संयुक्त निकाय की कुल ऊर्जा सदैव संरक्षित रहती है अर्थात्

परिभाषा से, निकायों की माध्य ऊर्जा का अन्तर इसके द्वारा अवशोषित ऊष्मा के बराबर होता है।

यदि Q धनात्मक है अर्थात् निकाय A द्वारा ऊष्मा का अवशोषण होता है तो Q’ ऋणात्मक होने के कारण निकाय A’ द्वारा ऊष्मा का उत्सर्जन होगा। इस प्रकार समीकरण ( 6 ) से स्पष्ट होता है कि यदि निकाय A द्वारा ऊष्मा का अवशोषण होता है तो ऊष्मीय अन्योन्य क्रिया करने वाले दूसरे निकाय A’ द्वारा बराबर मात्रा में ऊष्मा का उत्सर्जन होगा।

अतः सारांश में यह कहा जा सकता है कि अन्योन्य क्रिया करने वाले दो निकायों के बीच निम्न दो स्थितियाँ उत्पन्न

होती हैं।

(i) यदि ऊष्मीय अन्योन्य क्रिया करने वाले निकायों की प्रारम्भिक माध्य ऊर्जाएं इस प्रकार हैं कि वे प्रतिबन्ध βi (Ei) = β (Ē’i ) को सन्तुष्ट करते हैं तब Ei = Ē होता है और इस स्थिति में प्रायिकता P(E) एवं एन्ट्रॉपी S(E) दोनों उच्चतम होते हैं। दूसरे शब्दों में, दोनों निकाय परस्पर साम्यावस्था में रहते हैं और उनके मध्य कोई ऊष्मीय ऊर्जा का विनिमय नहीं होता है।

(ii) यदि निकायों की माध्य ऊर्जायें इस प्रकार हैं कि βi(Ēi) = βi (Ē’i ) है तो ऊष्मीय सम्पर्क होने पर दोनों निकाय परस्पर साम्यावस्था स्थिति में नहीं रहते हैं और उनकी माध्य ऊर्जा में परिवर्तन होता है। दोनों निकायों के बीच ऊष्मा विनिमय उस समय तक होता है जब तक कि दोनों निकाय साम्यावस्था (Ē =E तथा βf = βf’) को नहीं प्राप्त कर लेते हैं। इसके पश्चात् ऊष्मा विनिमय रूक जाता है।

Sbistudy

Recent Posts

मालकाना का युद्ध malkhana ka yudh kab hua tha in hindi

malkhana ka yudh kab hua tha in hindi मालकाना का युद्ध ? मालकाना के युद्ध…

4 weeks ago

कान्हड़देव तथा अलाउद्दीन खिलजी के संबंधों पर प्रकाश डालिए

राणा रतन सिंह चित्तौड़ ( 1302 ई. - 1303 ) राजस्थान के इतिहास में गुहिलवंशी…

4 weeks ago

हम्मीर देव चौहान का इतिहास क्या है ? hammir dev chauhan history in hindi explained

hammir dev chauhan history in hindi explained हम्मीर देव चौहान का इतिहास क्या है ?…

4 weeks ago

तराइन का प्रथम युद्ध कब और किसके बीच हुआ द्वितीय युद्ध Tarain battle in hindi first and second

Tarain battle in hindi first and second तराइन का प्रथम युद्ध कब और किसके बीच…

4 weeks ago

चौहानों की उत्पत्ति कैसे हुई थी ? chahamana dynasty ki utpatti kahan se hui in hindi

chahamana dynasty ki utpatti kahan se hui in hindi चौहानों की उत्पत्ति कैसे हुई थी…

1 month ago

भारत पर पहला तुर्क आक्रमण किसने किया कब हुआ first turk invaders who attacked india in hindi

first turk invaders who attacked india in hindi भारत पर पहला तुर्क आक्रमण किसने किया…

1 month ago
All Rights ReservedView Non-AMP Version
X

Headline

You can control the ways in which we improve and personalize your experience. Please choose whether you wish to allow the following:

Privacy Settings
JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now