JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now

हिंदी माध्यम नोट्स

Categories: chemistry

संयोजकता बंध सिद्धांत , V.B.T में H2 का बनना ,V.B.T व MOT की तुलना valence bond theory in hindi

(valence bond theory in hindi ) संयोजकता बंध सिद्धांत : V.B.T को सर्वप्रथम हिटलर व लंदन ने तरंग यांत्रिकी के आधार पर समझाया।
पॉलिग तथा स्लेटर ने V.B.T में अनुनाद संकरण तथा दिशात्मक गुण को समझाया।  अत: इसे HLPS सिद्धांत भी कहते है।
इसके मुख्य बिन्दु निम्न है –
1. सहसंयोजक बंध बनने में केवल बाह्यतम कोश में electron ही भाग लेते है।
2. प्रत्येक बंधित परमाणु की अपनी अलग पहचान होती है।
3. परमाणुओ के मध्य बंध बनने पर प्रयुक्त electron अपनी पहचान खो देते है।
4. बंध के electrons का दोनों परमाणुओं के मध्य आदान प्रदान होता रहता है जिससे बंध का स्थायित्व बढ़ जाता है।

V.B.T में H2 का बनना

H2 अणु के बनने में दोनों H परमाणु को एक दूसरे के समीप लाया जाता है जिससे उनके मध्य विभिन्न आकर्षण व प्रतिकर्षण बल कार्य करते है जिन्हे निम्न प्रकार प्रदर्शित करते है –
माना दोनों परमाणुओं जिनको हम HA तथा HB नाम देते है , ये दोनों परमाणु एक दूसरे से अन्नत दूरी पर है अर्थात उनके मध्य कोई पारस्परिक क्रिया प्रारम्भ होने लगती है।
माना परमाणु HA का तरंग फलन ΨA व परमाणु HB का तरंग फलन ΨB है।  यह मानते हुए की electron1 HA से तथा electron2 HB से सम्बंधित है अर्थात H2 अणु की HA(1) , HB(2) अनुनादी संरचना के आधार पर तरंग फलन निम्न होगा – ΨI = ΨA (1).ΨB (2)
H2 अणु के बनने के पश्चात् यह कहना कठिन होता है की कौनसे परमाणु से सम्बंधित है अत: ऐसी स्थिति में H2 अणु की अन्य अनुनादी संरचना HA(2).HB(1) के लिए तरंग फलन निम्न होगा।
ΨII = ΨA (2).ΨB (1)
अत: H2 अणु के बनने पर तंत्र का तरंग फलन समीकरण 1 तथा समीकरण 2 के द्वारा प्रदर्शित किया जा सकता है एवं तंत्र का वास्तविक तरंग फलन इन दोनों तरंग फलनों के रेखीय संयोग द्वारा प्राप्त किया जा सकता है।
Ψ = C1 ΨI + C2 ΨII
यहाँ C1 , C2 मिश्रण गुणांक है।
समीकरण 1 तथा समीकरण 2 से मान रखने पर
Ψ = C1 ΨI + C2 ΨII
Ψ = C1 ΨA (1).ΨB (2) + C2 ΨA (2).ΨB (1)
चूँकि प्रत्येक तरंग फलन को उसके मिश्रण गुणांक के वर्ग से मापा जाता है अत:
C12 = C22
अत: C1 = ± C2
अत: यदि C1 = +1 तो C2 = ±1
अत: हमें ऊपर वाला समीकरण निम्न प्रकार प्राप्त होता है –
Ψ+ = ΨA(1). ΨB(2) + ΨA(2). ΨB(1)

Ψ = ΨA(1). ΨB(2) –  ΨA(2). ΨB(1)

इस समीकरण में Ψ+ आकर्षण को दर्शाता है जिसमे स्थितिज ऊर्जा का मान न्यूनतम होता है।  इस स्थिति में दोनों H परमाणुओं के मध्य electron विपरीत चक्रण वाले होते है , फलस्वरूप H परमाणुओं के मध्य σ बंध का निर्माण होता है।
Ψप्रतिकर्षण को दर्शाता है जिसमें स्थितिज उर्जा अधिकतम होती है।  अत: बंध बनने की कोई सम्भावना नहीं होती।
वह अन्तरनाभिकीय दूरी जिस पर स्थितिज ऊर्जा का न्यूनतम मान होता है , बंध लम्बाई या साम्यवस्था दूरी कहलाती है।

V.B.T व MOT की तुलना

समानताएं :
1. दोनों ही सिद्धांत सहसंयोजक बंध के बनने व इसमें दिशात्मक गुणों की व्याख्या करते है।
2. दोनों सिद्धांतो के अनुसार अतिव्यापन करने वाले कक्षकों की सममिति व ऊर्जाओं के मान समान होते है।
3. दोनों सिद्धांतो के अनुसार electron आवेश घनत्व बंधित परमाणुओं के नाभिकों के मध्य स्थित होता है।
जैसे : कोई कण जो सीधे रेखा में गति कर रहा है तो उसकी स्थिति ज्ञात करने के लिए केवल एक निर्देशांक की आवश्यकता होती है अत: स्वतंत्रता की कोटि 1 होगी।
N परमाणु वाले अणुओं की स्वतंत्रता की कोटि का मान 3N होता है।
किसी अणु की कुल स्वतंत्रता की कोटि निम्न तीन गतियों का योग होती है –
3N = स्थानान्तरीय + कम्पन्न + घूर्णन
सभी अणुओं के लिए स्थानान्तरिय गति का मान सदैव तीन होता है।
रेखीय अणु जैसे कार्बन डाई ऑक्साइड आदि के लिए घूर्णन की स्वतंत्रता कोटि का मान 2 होता है।
अत: रेखीय अणुओं के लिए कंपन्न की स्वतंत्रता कोटि का मान
3N = 3 + कंपन्न + 2
कम्पन्न की स्वतंत्रता कोटि = 3N – 5
आरेखीय अणुओ के लिए घूर्णन की स्वतंत्रता कोटि का मान 3 होता है अत:
इनके लिए कम्पन्न की स्वतंत्रता कोटि = 3N – 6

संयोजकता बंध सिद्धांत की सीमाएं (limitations of valence bond theory)

संयोजकता बन्ध सिद्धान्त हालाँकि संकुलों के बनने , उनके चुम्बकीय गुणों और ज्यामिति , आदि की व्याख्या करने में काफी सफल रहा है लेकिन फिर भी इसकी कुछ सीमाएँ या कमियाँ है जिनकी वजह से इस नियम का अब केवल एतिहासिक महत्व ही अधिक रहा है। वर्तमान में संक्रमण तत्वों के संकुलों के व्यवहार की व्याख्या में इस सिद्धान्त का अधिक उपयोग नहीं होता।संयोजकता बंध सिद्धांत की कुछ मुख्य सीमायें या कमियाँ निम्नलिखित है –
  1. लगभग सभी संक्रमण धातुओं के संकुल विलयन में रंगीन आयन मुक्त करते है। पदार्थो का रंग उनकी संरचना पर निर्भर करता है। किसी पदार्थ के अणु अथवा आयन जब दृश्य प्रकाश में से कुछ विकिरणों का अवशोषण करते है तब वे रंगीन दिखते है। संक्रमण धातुओं के संकुल आयन रंगीन क्यों दिखाई देते है , इसकी व्याख्या संयोजकता बंध सिद्धांत के आधार पर संभव नहीं है।
  2. इस सिद्धांत के आधार पर इस बात की स्पष्ट व्याख्या नहीं की जा सकती कि धातु आयन आंतरिक कक्षक संकुल कब बनायेंगे तथा बाह्य कक्षक संकुल कब बनेंगे। संकुलों के चुम्बकीय गुणों के आधार पर हम उसके संकुल निर्माण की प्रक्रिया को समझा देते है परन्तु संरचना के आधार पर उनके चुम्बकीय गुणों का पूर्वानुमान इस सिद्धान्त के आधार पर नहीं लगाया जा सकता है।
  3. विभिन्न संकुलों के चुम्बकीय गुणों की मात्रात्मक व्याख्या भी इस सिद्धांत के आधार पर नहीं की जा सकती है।
  4. कई संकुलों उदाहरण [Cu(CH2O)6]2+की ज्यामिति विकृत होती है , जिसमे चार H2Oअणु समान दूरी पर होते है जबकि शेष दो H2O अणु अधिक दूरी पर स्थित होते है , ऐसा क्यों होता है , संयोजकता बंध सिद्धांत इसका कारण बताने में असमर्थ है।
  5. Co(II) और Cu(II) दोनों के संकुलों की ज्यामिति को समझाने के लिए इस सिद्धांत के अनुसार यह व्याख्या दी जाती है कि एक अयुग्मित इलेक्ट्रॉन उच्च ऊर्जा स्तर से उत्तेजित हो जाता है जैसा कि [Co(NH3)6]2+व[Cu(CN)4]2- को निम्न संरचनाओं में दर्शाया गया है –

ऐसा होने पर दोनों संकुलों में समान अपचायक गुण होने चाहिए परन्तु वास्तव में ऐसा नहीं होता , इसका स्पष्टीकरण इस सिद्धांत के आधार पर संभव नहीं है।

  1. किसी इलेक्ट्रॉन के उच्च ऊर्जा स्तर पर जाने के लिए पर्याप्त ऊर्जा की आवश्यकता पड़ती है। Co(II)औरCu(II) संकुल बनने में इनको इतनी ऊर्जा कैसे मिल जाती है कि इलेक्ट्रॉन 3d से 4d कक्षकों मव चले जाते है। यह सिद्धांत इस बात की व्याख्या नहीं कर सकता है।
  2. इस सिद्दान्त के आधार पर किसी संकुल के बनने में हुए ऊर्जा परिवर्तन की मात्रात्मक गणना भी नहीं कर सकते।
  3. Ni2+आयन अमोनिया अणुओं के साथ एक चतुष्फलकीय संकुल बनाता है जबकि सायनाइड आयनों के साथ इसका संकुल वर्ग समतलीय आकार का होता है , इसका भी स्पष्ट कारण और पूर्वानुमान इस सिद्धांत के आधार पर संभव नहीं है।
  4. विद्युत उदासीनता का सिद्धान्त: संयोजकता बंध सिद्धांत की सबसे बड़ी दुविधा यह है कि इसके अनुसार जब लिगैण्ड धातु परमाणु/आयन को अपने इलेक्ट्रॉन युग्म देंगे तो धातु पर औपचारिक ऋणावेश आ जायेगा तथा धातुओ पर ऋण आवेश तो उनके स्थायित्व को घटाने वाला ही होगा।

उदाहरण : माना Co(II) का एक संकुल [CoL6]2+ है। इसमें छ: लिगैंड अणु धातु आयन के साथ 12 इलेक्ट्रॉनों का साझा करेंगे जिससे धातु पर कुल -6 औपचारिक आवेश आ जायेगा जिसमे से +2 तो आयनिक आवेश से उदासीन हो जायेगा लेकिन -4 फिर भी रहेगा। पॉलिंग ने कहा कि किसी धातु के लिए इतने अधिक ऋण आवेश के साथ अनुकूलन बिल्कुल सम्भव नहीं है। दूसरी बात दाता परमाणु सामान्यतया अत्यधिक ऋण विद्युती तत्व (नाइट्रोजन , ऑक्सीजन , हैलोजन आदि) होते है जो धातु के साथ इलेक्ट्रॉन युग्म का साझा बराबरी पर नहीं करते है। पॉलिंग ने सुझाव दिया कि वे संकुल स्थायी होते है जिनमे धातु पर आवेश की मात्रा शून्य के करीब होती है। इसके लिए पॉलिंग ने कुछ अर्द्धमात्रात्मक गणनाएं करी जिनसे संकुलों के स्थायित्व और केन्द्रीय धातु परमाणु के आवेश के मध्य सम्बन्ध स्थापित किया।

उदाहरण : हम Be(II) तथा Al(III) के 2-2 संकुलों की विवेचना करेंगे। बेरिलियम के दो संकुलों [Be(H2O)4]2+ और [Be(H2O)6]2+ में से [Be(H2O)4]2+ संकुल स्थायी है क्योंकि इसमें Be पर -0.08 आवेश ही रहता है जो कि शून्य के निकट है। [Be(H2O)6]2+ संकुल में ऋण आवेश की मात्रा अधिक (-1.12) होने के कारण यह अस्थायी होता है। इसी प्रकार Al(II) का संकुल [Al(H2O)6]3+ तो स्थायी है लेकिन [Al(NH3)6]3+ संकुल अस्थायी है। इन परिणामों को निम्नलिखित सारणी में दिया जा रहा है –

संकुल [Be(H2O)4]2+ [Be(H2O)6]2+ [Al(H2O)6]3+ [Al(NH3)6]3+
आवेश वितरण Be = -0.08

4O = -0.24

8H = +2.32

Be = -1.12

6O = -0.36

12H = +3.48

Al = -0.12

6O = -0.36

12H = +3.48

Al = -1.08

6N = +1.20

18H = +2.88

कुल आवेश +2.00 +2.00 +3.00 +3.00
स्थायित्व स्थायी अस्थायी स्थायी अस्थायी
  1. संक्रमण धातुओं के कई संकुल धातु की कम ऑक्सीजन अवस्था में कम ऋण विद्युती दाता परमाणु के साथ बनते है , फिर भी काफी स्थायी होते है। इनके धातु कार्बोनिलों का उल्लेख किया जा सकता है। इन संकुलों में जब धातु परमाणु के पास ऋण आवेश अधिक हो जाता है तो ये पश्च बंधन द्वारा अपने इलेक्ट्रॉन घनत्व को कम करते है। पश्च बंधन में धातुओ के भरे हुए d कक्षक , लिगैण्ड के रिक्त विपरीत बंधी कक्षकों में अपने इलेक्ट्रॉन घनत्व का साझा करते है।

उदाहरण : क्रोमियम कार्बोनिल में क्रोमियम परमाणु पश्च बंधन द्वारा Cr-C के मध्य π बंध का निर्माण करते है जिससे Cr-C के मध्य का बंध क्रम बढ़ जाता है जबकि C-O के मध्य का बन्ध क्रम कम हो जाता है। इस प्रक्रम में क्रोमियम परमाणु पर इलेक्ट्रॉन घनत्व कम हो जाता है।

इस प्रकार संयोजकता बन्ध सिद्धान्त इसे अनुवाद द्वारा समझा देता है। इनके स्थायित्व की सही व्याख्या इस सिद्धांत के आधार पर सम्भव नहीं होती। संयोजकता बंध सिद्धांत की इन्ही कमियों के कारण संकुलों की व्याख्या करने के लिए आजकल इसका कम उपयोग किया जाता है।

Sbistudy

Recent Posts

सारंगपुर का युद्ध कब हुआ था ? सारंगपुर का युद्ध किसके मध्य हुआ

कुम्भा की राजनैतिक उपलकियाँ कुंमा की प्रारंभिक विजयें  - महाराणा कुम्भा ने अपने शासनकाल के…

4 weeks ago

रसिक प्रिया किसकी रचना है ? rasik priya ke lekhak kaun hai ?

अध्याय- मेवाड़ का उत्कर्ष 'रसिक प्रिया' - यह कृति कुम्भा द्वारा रचित है तथा जगदेय…

4 weeks ago

मालकाना का युद्ध malkhana ka yudh kab hua tha in hindi

malkhana ka yudh kab hua tha in hindi मालकाना का युद्ध ? मालकाना के युद्ध…

2 months ago

कान्हड़देव तथा अलाउद्दीन खिलजी के संबंधों पर प्रकाश डालिए

राणा रतन सिंह चित्तौड़ ( 1302 ई. - 1303 ) राजस्थान के इतिहास में गुहिलवंशी…

2 months ago

हम्मीर देव चौहान का इतिहास क्या है ? hammir dev chauhan history in hindi explained

hammir dev chauhan history in hindi explained हम्मीर देव चौहान का इतिहास क्या है ?…

2 months ago

तराइन का प्रथम युद्ध कब और किसके बीच हुआ द्वितीय युद्ध Tarain battle in hindi first and second

Tarain battle in hindi first and second तराइन का प्रथम युद्ध कब और किसके बीच…

2 months ago
All Rights ReservedView Non-AMP Version
X

Headline

You can control the ways in which we improve and personalize your experience. Please choose whether you wish to allow the following:

Privacy Settings
JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now