हिंदी माध्यम नोट्स
बल युग्म की परिभाषा क्या है ? बल युग्म किसे कहते हैं , बलयुग्म का सूत्र , विमा , मात्रक couple force in hindi
(couple force in hindi) बल युग्म की परिभाषा क्या है ? बल युग्म किसे कहते हैं , बलयुग्म का सूत्र , विमा , मात्रक ?
परिभाषा : समान परिमाण के बलों का युग्म जब विपरीत दिशा में आरोपित हो तो इसे बल युग्म कहते है।
बल युग्म के कारण बल आघूर्ण = एक बल का परिमाण x उनकी बल रेखाओं के मध्य की दूरी
बल युग्म वस्तु पर कुल बल नहीं लगाता है यदि यह एक बल आघूर्ण लगाता है।
किसी बल युग्म का कुल बल आघूर्ण किसी भी बिंदु के परित: समान होता है।
A के परित: बलाघूर्ण = x1F + x2F
= F(x1 + x2) = F.d
B के परित: बलाघूर्ण = y1F – y2F
= F(y1 – y2) = F.d
यदि निकाय पर कुल बल शून्य है तो किसी भी बिंदु के परित: बलाघूर्ण समान होता है।
इसका एक परिणाम यह है कि यदि Fnet = 0 तथा τ = 0 किसी भी एक बिंदु के परित: तो τnet = 0 , सभी बिंदु के परित:
बल का क्रिया बिंदु
बल का क्रिया बिंदु वह बिन्दु है जिस पर कुल बल आरोपित करने पर यह स्थानान्तरण और घूर्णन गति दोनों में वही प्रभाव उत्पन्न करता है , जो क्रिया बिंदु पर आरोपित करने से पहले थे।
द्वितीयक परिभाषा के रूप में बल का क्रिया बिंदु वह बिंदु है जिसके परित: समस्त बलों का बलाघूर्ण शून्य होता है।
माना कि तीन बल F1 , F2 , F3 किसी वस्तु पर कार्य कर रहे है और D बल का क्रिया बिंदु है तब F1 + F2 + F3 को D पर रखकर O के परित: मूल बलाघूर्ण के बराबर होगा |
[r1 x F1 + r2 x F2 + r3 x F3] = r x (F1 + F2 + F3)
नोट :
- गुरुत्व बल का क्रिया बिंदु को गुरुत्व केंद्र कहते है।
- गुरूत्व केंद्र और द्रव्यमान केंद्र एक होते है , यदि g का मान नियत हो।
- बल के क्रिया बिंदु की संकल्पना काल्पनिक है क्योंकि कुछ दशाओं में यह वस्तु के बाहर भी हो सकती है।
स्थिर अक्ष के परित: घूर्णन
यदि IHinge = घूर्णन अक्ष के परित: जड़त्व आघूर्ण (चूँकि यह अक्ष कब्जे से गुजरता है )
IHinge τext = वस्तु का घूर्णन अक्ष के परित: परिणामी बाह्य बलाघूर्ण
α = पिण्ड का कोणीय त्वरण
τext)Hinge = IHinge.α
घूर्णन गतिज ऊर्जा = I.w2/2
P = Mvcm
Fexternal = Macm
वस्तु पिण्ड पर कार्यरत परिणामी बाह्य बल के स्पर्शरेखीय और त्रिज्यीय घाट है।
Fc = mac = mV2/rcm = mw2rcm = Ft = mat = mαrcm
प्रश्न : चित्रानुसार पुली का इसकी अक्ष के सापेक्ष जडत्व आघूर्ण I है और इसकी त्रिज्या R है। दोनों ब्लॉक के त्वरण का परिमाण ज्ञात करो ? यह मानना है कि रस्सी हल्की है और पुली पर फिसलती नहीं है।
उत्तर : माना बायीं रस्सी में तनाव T1 है और दाई रस्सी में तनाव T2 है। माना M द्रव्यमान वाला ब्लॉक α त्वरण से निचे जा रहा है और दूसरा ब्लॉक समान त्वरण से ऊपर जा रहा है। चूँकि रस्सी पहिये की परिधि पर फिसल नहीं रही है अत: यह परिधि का स्पर्श रेखीय त्वरण भी है। इसलिए पहिये का कोणीय त्वरण α = a/R है। अत: M द्रव्यमान , m द्रव्यमान और पुली के लिए गति की समीकरण निम्न है –
Mg – T1 = Ma . . . .. . . .समीकरण-1
T2 – mg = ma . . . .. . . .समीकरण-2
T1R – T2R = Iα/R . . . .. . . .समीकरण-3
समीकरण-1 और समीकरण-2 से T1 और T2 का मान समीकरण-3 में रखने पर –
[(Mg – a) – m(g+a)]R = Ia/R अत: a = (M-m)gR3/[I + (M+m)R2]
प्रश्न : m द्रव्यमान और l लम्बाई की समरूप छड एक चिकनी क्षैतिज अक्ष के सापेक्ष H बिंदु पर किलकित है , यह उर्ध्वाधर तल में घूर्णन कर सकती है।
(1) छड को इसकी प्रारंभिक क्षैतिज स्थिति से विराम से मुक्त करने के तुरंत बाद इसका कोणीय त्वरण α ज्ञात करो ?
(2) इस क्षण बिंदु A का त्वरण (त्रिज्यीय और स्पर्शरेखीय) ज्ञात करो ?
(3) इस क्षण पर कुल हिन्ज बल ज्ञात कीजिये।
(4) जब छड़ उर्ध्व होती है तो हिन्ज बल ज्ञात कीजिये।
हल :
(1) τH = IH α
mg.l/2 = ml2α/3
α = 3g/2l
(2) atA = αl = 3g.l/2l = 3g/2
aCA = w2r = 0.l = 0 (चूँकि w = 0 छोड़ने के तुरंत बाद)
(3) माना कि हिन्ज चित्र में दर्शाए अनुसार अभिलम्ब प्रतिक्रिया लगती है।
ऊर्ध्व दिशा में Fext = macm
mg – N1 = m.3g/4 (पिछले उदहारण से हम acm का मान प्राप्त कर सकते है |)
N1 = mg/4
क्षैतिज दिशा में –
Fext = macm = N2 = 0 (चूँकि क्षैतिज दिशा में acm = 0 , w = 0 छोड़ने के तुरंत बाद )
(4) बलाघूर्ण = 0 जब छड उर्ध्व हो जाती है –
अत: α = 0
ऊर्जा संरक्षण से mgl/2 = Iw2/2
(I = ml2/3)
w = √3g/l
(5) जब छड उर्ध्व हो जाती है –
α = 0 , w = √3g/l
FH – mg = mw2l/2
F = 5mg/2
प्रश्न : M द्रव्यमान और r त्रिज्या का एक ठोस बेलन किसी घर्षण रहित धुरी जो कुँए को ऊपर किनारों पर रखा गया है। नगण्य द्रव्यमान की एक डोरी बेलन पर लपेटी गयी है और इस डोरी के एक सिरे में एक बाल्टी लटकाई है। बाल्टी का रेखीय त्वरण होगा।
उत्तर : τ = Iα = rT = (1/2)Mr2.a/r = rT
T = Ma/2 . . . . .. . . समीकरण-1
समीकरण-1 तथा समीकरण-2 से –
Ma/2 = m(g-a) = [M+2m]a/2 = mg
a = 2mg/(M + 2m)
प्रश्न : M द्रव्यमान और R त्रिज्या का एक ठोस बेलन किसी घर्षण रहित क्षैतिज धुरी पर घूर्णन करता है। दो एक समान द्रव्यमान बेलन पर लिपटी दो डोरियो से लटक रहे है। यदि निकाय विराम से छोड़ा जाए तो प्रत्येक डोरी में तनाव होगा।
उत्तर : mg – T = ma
mg – T = mg
दोनों समीकरणों से –
2mg – 2T = 2ma . . . . .. . . समीकरण-1
τ = (2T)R = Iα = (1/2)MR2.(a/R) . . . . .. . . समीकरण-2
दोनों समीकरणों से –
T = Mmg/(M+4m)
नोट : a = 4mg(M+4m)
Recent Posts
Question Tag Definition in english with examples upsc ssc ias state pcs exames important topic
Question Tag Definition • A question tag is a small question at the end of a…
Translation in english grammer in hindi examples Step of Translation (अनुवाद के चरण)
Translation 1. Step of Translation (अनुवाद के चरण) • मूल वाक्य का पता करना और उसकी…
Report Writing examples in english grammer How to Write Reports explain Exercise
Report Writing • How to Write Reports • Just as no definite rules can be laid down…
Letter writing ,types and their examples in english grammer upsc state pcs class 12 10th
Letter writing • Introduction • Letter writing is an intricate task as it demands meticulous attention, still…
विश्व के महाद्वीप की भौगोलिक विशेषताएँ continents of the world and their countries in hindi features
continents of the world and their countries in hindi features विश्व के महाद्वीप की भौगोलिक…
भारत के वन्य जीव राष्ट्रीय उद्यान list in hin hindi IAS UPSC
भारत के वन्य जीव भारत में जलवायु की दृष्टि से काफी विविधता पाई जाती है,…