हिंदी माध्यम नोट्स
Coordinate Transformation in hindi | निर्देशांक रूपान्तरण क्या है , निर्देश तंत्रों के लिये समीकरण
यहाँ हम जान पाएंगे कि Coordinate Transformation in hindi | निर्देशांक रूपान्तरण क्या है , निर्देश तंत्रों के लिये समीकरण किसे कहते हैं ?
निर्देशांक रूपान्तरण (Coordinate Transformation)
किसी कण की स्थिति व अवस्था को व्यक्त करने अथवा किसी घटना की व्याख्या के लिये निर्देश तंत्र निर्धारित करना आवश्यक होता है। एक तंत्र में लिये गये प्रेक्षण उसी घटना के लिये दूसरे तंत्र में लिये गये प्रेक्षणों से भिन्न होते हैं। उदाहरण के लिये प्लेटफॉर्म पर खड़े व्यक्ति के लिये आस पास के वृक्ष आदि स्थिर प्रेक्षित होते हैं परन्तु चलती गाड़ी में बैठे व्यक्ति के लिये वे वृक्ष गतिशील प्रेक्षित हैं। किसी घटना के लिए एक तंत्र में लिये गये प्रेक्षणों तथा उसी घटना के लिये दूसरे तंत्र में लिए गये प्रेक्षणों के मध्य संबंध व्यक्त करने वाले संबंधों को रूपान्तरण समीकरण कहते हैं।
यदि निर्देश तंत्रों के मध्य कोई आपेक्षिक गति नहीं होती है और केवल स्थानान्तरण अथवा निश्चित कोण से घूर्णन होता है तो रूपान्तरण समय अनाश्रित होते हैं। इसके विपरीत जब उनके मध्य ओपक्षिक गति होती है तो रूपान्तरण समीकरण समय पर आश्रित होते हैं। सर्वप्रथम हम समय अनाश्रित रूपान्तरण पर विचार करते हैं।
(i) स्थानान्तरित निर्देश तंत्रों के लिये रूपान्तरण समीकरण (Transformation equations for frames of reference involving translation):
मान लीजिये S व S’ दो निर्देश तन्त्र हैं जिनके मूल बिन्दु क्रमशः 0 व O’ है। इन मूल बिन्दुओं पर प्रेक्षक स्थित हैं। O’ पर प्रेक्षक का, तंत्र S के मूल बिन्दु 0 पर प्रेक्षक के सापेक्ष विस्थापन r0 है। यदि किसी कण P का निर्देश तंत्र S में स्थिति सदिश r है तो निर्देश तन्त्र S’ में इसी कण का स्थिति सदिश r’ होगा, जहाँ चित्र के अनुसार
r’ = r – r0
समय t के सापेक्ष अवकलन करने पर
dr’/dt = dr/dt – dr0/dt
यदि r0 नियत है तो
dr0/dt = 0
अत: dr’/dt = dr/dt
अर्थात v’ = v
पुन: समय के सापेक्ष अवकलन से
dv’/dt = dv/dt
अर्थात a’ = a
इस प्रकार केवल स्थानान्तरित निर्देश तंत्र S’ में कण की स्थिति भिन्न प्रेक्षित होगी परन्तु उसका वेग व त्वरण निर्देश तंत्र S में मापित मानों के समान ही प्राप्त होगा।
समीकरण (1) , (2) व (3) स्थानान्तरित निर्देश तन्त्रों के मध्य समय-अनाश्रित रूपान्तरण समीकरण है।
(ii) एकसमान आपेक्षिक स्थानांतरीय गति करते हये निर्देश तंत्रों में निर्देशांक रूपान्तरण (Coordinates transformation in reference frames having uniform relative motion of translation)
चित्र (4) में यदि निदेश तंत्र S’ निर्देश तंत्र S के सापेक्ष नियत वेग V से स्थानान्तरीय गति करता हता प्रत्यक क्षण इन निदेश तंत्रों के अक्ष परस्पर समान्तर रहेंगे परन्त स्थिति समय पर निर्भर होगी। यदि प्रारम्भ में अर्थात t = 0 पर दोनों तंत्रों के मूल बिंदु संपाती है तो समय t पर O’ का O के सापेक्ष स्थिति सदिश r0 = Vt होगा। मान लीजिये कोई कण तंत्र o में वेग u से गति कर रहा है व समय t पर उसका स्थिति सदिश r है। अतः तंत्र O’ में समय t पर स्थिति सदिश होगा –
r’ = r – r0 = r – (vt)
जिससे कण का वेग v’ = dr’/dt = dr/dt – dr0/dt = u – v
कण का त्वरण a’ = dv’/dt = du/dt – dv/dt
= a
क्योंकि v नियत है। इस प्रकार एकसमान आपेक्षिक स्थानान्तरीय गति में स्थिति व वेग क्रमशः समीकरण (4) व (5) के अनुसार परिवर्तित प्रेक्षित होंगे परन्तु त्वरण अपरिवर्तित रहेगा। समाकरण (4). (5) व (6) उपरोक्त अवस्था में समय-आश्रित रूपान्तरण समीकरण है।
अब x’ = OC = DP = DF + FP
= OE + FP
= OA cosθ + ysinθ
और y’ = OD = EF
= AF-AE
= AP cosθ – Oasinθ
= ycosθ – xsinθ
समीकरण 4 और 5 को निम्नलिखित प्रकार से भी लिख सकते है –
X’ = xcos (X’ OX) + y cos(X’ OY)
Y’ = xcos(y’ OX) + ycos(Y’OY)
क्योंकि X’OY = 90 – X’OX = 90 – θ
तथा cosX’OY = cos(90- θ) = Sinθ
इसी प्रकार Y’OX = 90 + X’OX = 90 + θ
और cosY’OX = cos(90 + θ) = -sin θ
समीकरण 4 और 5 अथवा 6 एवं 7 झुके निर्देश तन्त्र में रूपांतरण समीकरण कहलाते है |
(iv) घूर्णन गति करते हुए निर्देश तन्त्र में रूपान्तरण (transformation in a rotating frame of reference)
द्विविमीय (two dimensional) : माना S और R दो निर्देश तन्त्र है जिनके अक्ष और मूल बिंदु प्रारंभ में , अर्थात t = 0 पर संपाती
माना निर्देश तंत्र R नियत कोणीय वेग w से इस तरह घूर्णन करता है कि दोनों निर्देश तंत्रों के मूल बिंदु और Z अक्ष संपाती रहते है |
किसी क्षण t सेकण्ड पश्चात् R तन्त्र के X’ तथा Y’ अक्ष S तन्त्र के X तथा Y अक्ष से θ =wt कोण से झुके होगे। इस स्थिति में कण P के निर्देशांक निर्देश तंत्र S तथा R में क्रमशः X, , y , z तथा x’ , y’ , z’ हों तो पिछले खण्ड की तरह निर्देशांकों का रूपान्तरण समीकरण ज्ञात कर सकते हैं। ये समीकरण हैं
x’ = X cos wt + y sin wt
y’ = y cos wt – x sin wt
z’ =z
उपरोक्त रूपान्तरण समीकरण समय पर आश्रित हैं। घूर्णन गति करते हुए निर्देश तंत्र में अक्षों की दिशा और एकांक सदिशों के मान समय पर निर्भर होते है | अत: वेग और त्वरण के लिए रूपांतरण समीकरण ज्ञात करते समय इस प्रकार की निर्भरता को ध्यान में रखना आवश्यक है। इन रूपान्तरणों का अध्ययन अध्याय (3) में किया जायेगा।
Recent Posts
सती रासो किसकी रचना है , sati raso ke rachnakar kaun hai in hindi , सती रासो के लेखक कौन है
सती रासो के लेखक कौन है सती रासो किसकी रचना है , sati raso ke…
मारवाड़ रा परगना री विगत किसकी रचना है , marwar ra pargana ri vigat ke lekhak kaun the
marwar ra pargana ri vigat ke lekhak kaun the मारवाड़ रा परगना री विगत किसकी…
राजस्थान के इतिहास के पुरातात्विक स्रोतों की विवेचना कीजिए sources of rajasthan history in hindi
sources of rajasthan history in hindi राजस्थान के इतिहास के पुरातात्विक स्रोतों की विवेचना कीजिए…
गुर्जरात्रा प्रदेश राजस्थान कौनसा है , किसे कहते है ? gurjaratra pradesh in rajasthan in hindi
gurjaratra pradesh in rajasthan in hindi गुर्जरात्रा प्रदेश राजस्थान कौनसा है , किसे कहते है…
Weston Standard Cell in hindi वेस्टन मानक सेल क्या है इससे सेल विभव (वि.वा.बल) का मापन
वेस्टन मानक सेल क्या है इससे सेल विभव (वि.वा.बल) का मापन Weston Standard Cell in…
polity notes pdf in hindi for upsc prelims and mains exam , SSC , RAS political science hindi medium handwritten
get all types and chapters polity notes pdf in hindi for upsc , SSC ,…