JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now

हिंदी माध्यम नोट्स

चिरसम्मत सांख्यिकी क्या है Classical Statistics in hindi मैक्सवेल – बोल्ट्जमान सांख्यिकी Maxwell-Boltzmann Statistics

जानिये चिरसम्मत सांख्यिकी क्या है Classical Statistics in hindi मैक्सवेल – बोल्ट्जमान सांख्यिकी Maxwell-Boltzmann Statistics ?

चिरसम्मत साख्यिकी : मैक्सवेल – बोल्ट्जमान सांख्यिकी (Classical Statistics : Maxwell-Boltzmann Statistics)
 प्रस्तावना ( Introduction)
सांख्यिकीय यांत्रिकी एक ऐसी पद्धति है जिसके द्वारा निकाय के स्थूल गुणों का अध्ययन निकाय के अतिसूक्ष्म गुणों के रूप में किया जाता है। इसका सामान्य स्वरूप यांत्रिकी (चिरसम्मत अथवा क्वान्टम) पर निर्भर नहीं करता है, क्योंकि यांत्रिकी केवल उन आदर्श – अवस्थाओं में ही लागू होती है जहाँ यांत्रिक निकाय की गति के बारे में सम्पूर्ण सूचना प्राप्त हो । सांख्यिकीय यांत्रिकी दो प्रकार की होती है – चिरसम्मत व क्वान्टम सांख्यिकीय यांत्रिकी । यहाँ हम ऐतिहासिक क्रम का पालन करते हुए ” चिरसम्मत” या मैक्सवेल – बोल्ट्जमान सांख्यिकी से प्रारम्भ करेंगे।
अणुगति सिद्धान्त की भांति, सांख्यिकीय यांत्रिकी भी द्रव्य के आण्विक प्रतिरूप की कल्पना करती है, परन्तु अणुओं के एक दूसरे के साथ अथवा एक पृष्ठ के साथ संघट्टों जैसे तथ्यों के विस्तृत विचार से सम्बन्ध नहीं रखती । इसके स्थान पर यह इस तथ्य का लाभ उठाती है कि अणु बड़ी संख्या में हैं और अणुओं के एक समुदाय के अनेक गुणों की विशिष्ट अणुओं के विषय में सूचना के अभाव में भी, यथार्थता के साथ प्रागुक्ति की जा सकती है। जैसे एक बीमा विज्ञ, जीवन बीमा कम्पनी के लिए एक राज्य में एक निश्चित वर्ष में जन्मे सब लोगों की, बिना विभिन्न लोगों के स्वास्थ्य की अवस्था के ज्ञान के, उच्च परिशुद्धता के साथ औसत प्रत्याशित आयु की प्रागुक्ति कर सकता है।

चिरसम्मत सन्निकटन की वैधता (Validity of Classical Approximation)
किसी भी निकाय का क्वान्टम – यांत्रिकीय विवरण अधिक यथार्थ होता है परन्तु उपयुक्त अवस्थाओं में क्वान्टम-यांत्रिकीय विवरण तथा चिरसम्मत यांत्रिकी के द्वारा प्राप्त विवरण सन्निकटतः तुल्य होते हैं । अतः यह जानना आवश्यक है कि किन अवस्थाओं में चिरसम्मत सिद्धान्तों पर आधारित सांख्यिकी निकायों की व्याख्या के लिए उपयुक्त है अर्थात् किन अवस्थाओं में चिरसम्मत सन्निकटन वैध हैं।
नियत ताप पर ऊष्मा भण्डार के सम्पर्क में स्थित निकाय के लिए कैनोनिकल वितरण ( canonical distribution) के अनुसार ऊर्जा E की अवस्था में स्थित होने की प्रायिकता e ^ -E/KT के अनुक्रमानुपाती होती है। यदि ऊष्मीय ऊर्जा kT का मान अत्यल्प हो और यह निकाय के ऊर्जा स्तरों के मध्य अन्तराल △E से कम या उसके लगभग बराबर हो तो ऊर्जा E व ऊर्जा E + △E की अवस्थाओं में निकाय के स्थित होने की प्रायिकताओं में वृहद अंतर होगा। ऐसी अवस्था में निकाय की ऊर्जा अवस्थाओं का विविक्त या क्वान्टित होना बहुत महत्वपूर्ण होगा। इसके विपरीत यदि ऊष्मीय ऊर्जा KT का मान ऊर्जा अन्तराल AE की तुलना में बहुत अधिक है (KT >> △E) तो प्रायिकता फलन में चरघतांकी गुणक e^ -E/KT महत्त्वपूर्ण नहीं होगी क्योंकि E व E + △E दोनों ऊर्जा अवस्थाओं के लिए इस गुणक का मान बराबर (= 1) होगा। इस प्रकार निकाय की संभाव्य ऊर्जाओं का विविक्त होना या सतत होना महत्त्वपूर्ण नहीं रहेगा तथा चिरसम्मत विवरण संभव होगा।
इसके अतिरिक्त यदि किसी निकाय के लिये यह सिद्ध किया जा सके कि क्वान्टम – यांत्रिकी के प्रभाव महत्त्वहीन हैं तो चिरसम्मत सन्निकटन वैध होगा। क्वांटम यांत्रिकी के अनुसार चिरसम्मत सिद्धान्तों की वैधता पर मूल – प्रतिबंध हाइजनबर्ग के अनिश्चितता सिद्धान्त से प्राप्त होता है, जिसके अनुसार स्थिति निर्देशांक q व संगत संवेग निर्देशांक के एक साथ मापन में उनकी अनिश्चिताओं के परिमाणों △q व △p का गुणनफल सदैव h(= h/2π) से अधिक होता है, अर्थात्
△q △p ≥ h
चिरसम्मत सिद्धान्तों के अनुसार किसी कण की स्थिति व उसके संवेग का अनंत यथार्थता (precision) के साथ वर्णन संभव है। मान लीजिये संवेग D के किसी कण की स्थिति की हम व्याख्या करना चाहते हैं तो क्वांटम यांत्रिकी के प्रभाव को नगण्य बनाने के लिए यह जानना चाहेंगे कि हम इस कंण की स्थिति को कम से कम कितनी दूरी में स्थानीकृत (localize) कर सकते हैं। यदि यह न्यूनतम दूरी s है तो चिरसम्मत विवरण वैध होगा, यदि
sp >> h
यहाँ Aq = s तथा s का मान न्यूनतम होने के लिए (△P)अधिकतम = p लिया गया है।
अतः
S >> h/P
S >> h/P
s >> λ
जहाँ λ = h/p दे ब्रोग्ली तरंगदैर्घ्य है। इस प्रकार क्वान्टम प्रभाव नगण्य होंगे, यदि न्यूनतम प्रयुक्त दूरियाँ s कणों की दे ब्रोगली तरंगदैर्घ्य की तुलना में बहुत अधिक है। इन अवस्थाओं में कणों का तरंगस्वरूप महत्त्वहीन होगा। संक्षेप में, चिरसम्मत सन्निकटन वैध होगा यदि
kT >> △E
तथा s >> λ
कला निर्देशाकाश (Phase-Space)
सांख्यिकीय दृष्टिकोण से सरलतम तंत्र एक एक परमाणुक गैस है। आश्विक दृष्टिकोण से, गैस की अवस्था पूर्ण विवरण में प्रत्येक अणु की स्थिति तथा वेग के लिए कथन आवश्यक है, अर्थात् प्रत्येक अणु के लिए छ: राशियों x, y, z, Vx, Vy, Vz को निर्दिष्ट करना आवश्यक है।
पिछले अध्याय में, जहाँ हमने मैक्सवेल वेग बंटन फलन (Maxwellian velocity distribution function) व्युत्पन्न किया था, वेग समष्टि ( velocity space) की संकल्पना तथा वेग समष्टि में प्रति एकांक

“आयतन” निरूपक बिन्दुओं की संख्या की चर्चा करना सहायक सिद्ध हुआ था। अब हम उपर्युक्त छः हों राशियों पर विचार करना चाहते हैं। अधिकांशत: ज्यामितीय भाषा (geometric language) प्रयुक्त करना सरल एवं लाभदायक होता है, तदनुसार षट्विमीय पराकाश अथवा कला निर्देशाकाश ( six dimensional space or phase space) में एक बिन्दु के तीन स्थिति निर्देशांकों और तीन वेग अथवा संवेग निर्देशांकों को व्यक्त करती है।
हम कला निर्देशाकाश को आयतन के षट्-विमीय अल्पांशों में विभाजित कर सकते हैं, जिनको संक्षिप्तता के लिए कोष्ठिका (cell) कहते हैं तथा जिनकी भुजायें dx, dy, dz, dpy, dp,, dp, लम्बाई की होती हैं। अवकल dx, dy, dz व dpx, dpy, dpz, क्रमश: निकाय के विस्तार के तथा अणुओं के संवेगों की परास (range) की तुलना में छोटे होते हैं परन्तु इतने बड़े अवश्य होते हैं कि प्रत्येक कोष्ठिका में निरूपक बिन्दुओं की एक वृहत् संख्या होती है। इस कोष्ठिका के आयतन को, अथवा उपर्युक्त छः राशियों के गुणनफल को, H से निरूपित करते हैं। गैस के प्रत्येक अणु का कला-निर्देशाकाश (phase-space) में अपना एक निरूपक बिन्दु (representative point) होता है और संक्षिप्तता के लिए हम इन्हें कला – बिन्दु (phase-point) कहते हैं।
कोष्ठिकाओं को 1, 2, 3, ……1….., संख्याओं से अंकित किया गया है और मान लीजिए कि संगत कोष्ठिकाओं में N1, N2, Ni कला – बिन्दुओं की संख्याऐं हैं। तब प्रति एकांक आयतन कला – बिन्दुओं की संख्या, या कला-निर्देशाकाश में “घनत्व”, जिसे हम p से निरूपित करते हैं, निम्न होता है

जहाँ पादाक्षर (subscript) i कोष्ठिका की क्रम संख्या है। घनत्व p, iवीं कोष्ठिका के छः निर्देशांकों का कोई फलन होगा, और सांख्यिकीय यांत्रिकी की मूल समस्या इस फलन का प्रारूप (form) ज्ञात करना है।
व्यापक रूप में यदि किसी निकाय की स्वातन्त्र्य कोटियों की संख्या f है, अर्थात् उसका वर्णन f स्थिति निर्देशांकों p1, p2….pf तथा f संगत संवेग निर्देशांकों P1, P2 ,Pf द्वारा किया जाता है तो निकाय की किसी अवस्था को 2f विमीय कला निर्देशाकाश में बिन्दु ( q1, q2, qf; P1, P2 , Pf ) से निरूपित किया जायेगा। इस कला निर्देशाकाश में प्रत्येक कोष्ठिका का आयतन
H = (dq1, dq2 ….dqf dpi dp2 dpf ) होगा।
इस प्रकार निकाय की किसी भी अवस्था का वर्णन कला निर्देशाकाश में उस कोष्ठिका पर निर्भर होगा जिसमें अवस्था से सम्बद्ध कला बिन्दु स्थित होगा। अत: चिरसम्मत विवरण में कला निर्देशाकाश में कोष्ठिका क्वान्टम यांत्रिकी विवरण में क्वांटम अवस्था (quantum state) के अनुरूपी है। यह ध्यान रखिये कि चिरसम्मत विवरण में कोष्ठिका का आयतन इच्छानुसार लिया जा सकता है जबकि क्वान्टम यांत्रिकी में क्वान्टम अवस्था प्लांक नियतांक h के रूप में असंदिग्ध रूप से परिभाषित होती है।
क्वान्टम सांख्यिकी के अनुसार
△q1 △p1 ≥h/2л
अत: △q1 △p1) = ho ले सकते हैं। जहाँ ho एक नियतांक है जिसकी विमा प्लांक नियतांक के समान है। इसके आधार पर H = gho जहाँ ), कला आकाश में न्यूनतम आयतन है व g कोष्ठिका में स्तरों की संख्या है। तीन स्वातंत्र्य कोटियों (छ: विमीय निर्देशाकाश) के निकाय के लिए कोष्ठिका का आयतन H = g ho
कला निर्देशाकाश की परिकल्पना को स्पष्ट करने के लिए, हम एक विमीय आवर्ती दोलक की गति पर विचार करते हैं। किसी भी क्षण दोलक की कुल ऊर्जा (E) जो कि एक नियत राशि है, का मान होगा-

Sbistudy

Recent Posts

मालकाना का युद्ध malkhana ka yudh kab hua tha in hindi

malkhana ka yudh kab hua tha in hindi मालकाना का युद्ध ? मालकाना के युद्ध…

4 weeks ago

कान्हड़देव तथा अलाउद्दीन खिलजी के संबंधों पर प्रकाश डालिए

राणा रतन सिंह चित्तौड़ ( 1302 ई. - 1303 ) राजस्थान के इतिहास में गुहिलवंशी…

4 weeks ago

हम्मीर देव चौहान का इतिहास क्या है ? hammir dev chauhan history in hindi explained

hammir dev chauhan history in hindi explained हम्मीर देव चौहान का इतिहास क्या है ?…

4 weeks ago

तराइन का प्रथम युद्ध कब और किसके बीच हुआ द्वितीय युद्ध Tarain battle in hindi first and second

Tarain battle in hindi first and second तराइन का प्रथम युद्ध कब और किसके बीच…

4 weeks ago

चौहानों की उत्पत्ति कैसे हुई थी ? chahamana dynasty ki utpatti kahan se hui in hindi

chahamana dynasty ki utpatti kahan se hui in hindi चौहानों की उत्पत्ति कैसे हुई थी…

1 month ago

भारत पर पहला तुर्क आक्रमण किसने किया कब हुआ first turk invaders who attacked india in hindi

first turk invaders who attacked india in hindi भारत पर पहला तुर्क आक्रमण किसने किया…

1 month ago
All Rights ReservedView Non-AMP Version
X

Headline

You can control the ways in which we improve and personalize your experience. Please choose whether you wish to allow the following:

Privacy Settings
JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now