JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now

हिंदी माध्यम नोट्स

Categories: physics

कोणीय संवेग एवं बल आघूर्ण में संबंध स्थापित कीजिए। Angular Momentum and Torque in hindi

Angular Momentum and Torque in hindi कोणीय संवेग एवं बल आघूर्ण में संबंध स्थापित कीजिए।

कोणीय संवेग तथा बलाघूर्ण (Angular Momentum and Torque)

(i). कोणीय संवेग (Angular momentum) : किसी जडत्वीय फ्रेम में किसी क्षण रेखीय संवेग (linear momentum) का किसी नियत बिंदु के प्रति आघर्ण moment) कोणीय संवेग कहलाता हैं ।

गति में कोणीय संवेग का वही महत्व होता है जो रेखीय गति में रेखीय संवेग का होता है। कोणीय संवेग का मान कण के घूर्णन केन्द्र से उसके स्थिति (r) सदिश तथा उसके रेखीय संवेग p = mv के सदिश गुणनफल के बराबर होता है। इसे प्रायः j या L से प्रदर्शित करते हैं। यदि किसी कण का रेखीय संवेग P = m v तथा नियत बिन्दु से उसका स्थिति सदिश में हो तो

कण का कोणीय संवेग,

J = r x  P = m( r x V) …………………..(1)

कोणीय संवेग एक सदिश राशि होती है इसकी दिशा r तथा p के तल के लम्बवत होती है तथा दाहिने हाथ के पेंच के नियम (righ handed screw rule) से ज्ञात की जा सकती है।

समीकरण (1) से प्रदर्शित कोणीय संवेग का परिमाण  I j | = r p sin θ = mvr sin θ …………………….(2)

यहाँ θ, r तथा p के मध्य कोण है।

किसी वृत्ताकार पथ पर गतिमान कण के लिये,

V = w x r

जहाँ के कोणीय वेग है।

j = m [7 x (w x 7)]

=m {w (r . r)-r (r. w]

j = mr2 = Iw ………………………(3)

(क्योंकि वृत्तीय गति में w तथा r परस्पर लम्बवत होते हैं इसलिए  r . w = 0)

| j | = mr2 w   ……………………………(4a)

= lw ……………………………………….(4b)

यहां i कण का घूर्णन अक्ष के प्रति जड़त्व आघूर्ण है।

अतः j तथा w की दिशा समान होती है तथा j एक अक्षीय वेक्टर (axial vector) होता है।

समीकरण (1) को घटकों के रूप में लिखने पर ।

J = r x P =  I     j    k

X    y    z

Px   py   pz

__ = i (ypz – zpy) + j zpx – xpz) + k (xpy – YPx)  ………………..(5)

कोणीय संवेग j को घटकों के रूप में लिखने पर ।

j = I jx + j jy + k jz, …………..(6)

समीकरण (5) को पुनः लिखने पर

I + jx, + jJy = k jz = I  (ypz – ZPy) + j(zpx – xpz,) + k (xpy, – YPx)

इस समीकरण के दोनों पक्षों के  I , j तथा k के गुणांकों की तुलना करने पर

Jx = (ypz – zpy)

Jy = (zpx – xpz) …………………………….(7)

Jz = (xPy – YPx)

कोणीय संवेग का मात्रक, C.GS.पद्धति में ग्राम-सेमी/से. तथा MKS पद्धति में किग्रा-मी/से. या जूल-से. होता है।

  • बल आघूर्ण (Torque)-किसी बल (force) का किसी नियत स्थिर बिन्दु के सापेक्ष आघूर्ण (moment), बल–आघूर्ण (torque) कहलाता है। घूर्णन गति में बल आघूर्ण का वही महत्व होता है जो कि रेखीय गति में बल का होता है। बल आघूर्ण का मान नियत बिन्दु के सापेक्ष कण के स्थिति सदिश तथा कण पर लगने वाले बल F के सदिश गुणनफल के बराबर होता है। इसे प्रायः से प्रदर्शित करते हैं। यदि किसी कण पर लगने वाला बल है तथा नियत बिन्दु के सापेक्ष कण की स्थिति सदिश 7 है तो बल आघूर्ण

τ = r x f

बल आघूर्ण एक सदिश राशि होती है। इसकी दिशा r तथा F के तल के लम्बवत् होती है तथा दाहिने हाथ के पेच के नियम (right handed screwrule) से ज्ञात की जा सकती है। की दिशा घूर्णन अक्ष के अनुदिश होती है |

समीकरण (8) से प्रदर्शित बल-आघूर्ण का परिमाण

τ = | τ |  = r F sin θ

यहाँ θ. R  तथा F के मध्य कोण है।

समीकरण (9) में यदि θ = 90° हो अर्थात r  तथा F एक दूसरे लम्बवत् हो तो

(.: sin 90° =1)

τ = rF

यदि θ = 00  हो अर्थात r तथा F एक दूसरे के अनुदिश हों तो

τ  = 0                                         (:.sin 0° = 0)

बल आघूर्ण का मात्रक डाइन-सेमी या न्यूटन मीटर है।

कोणीय संवेग तथा बल आघूर्ण में संबंध (Relation between angular momentum and torque)-समीकरण (1) को समय के सापेक्ष अवकलित करने पर

Dj /dt = d/dt (r x p)

= dr /dt x p + r x dp/dt

परन्तु  dr /dt = v तथा p = m v

अतः  dr/dt x p = v x m v = m (v x v) =

Dj /dt = r x dp/dt

लेकिन न्यूटन के गति के द्वितीय नियम से,

Dp/dt = F

Dj/dt = r x F ……………………..(10)

समीकरण (7) से r x F = τ =  बल-आघूर्ण

DJ/dt = τ

अतः कोणीय संवेग में परिवर्तन की दर कण पर आरोपीय संवेग में परिवर्तन की दर कण पर आरोपित बल-आघूर्ण के बराबर होती है।

कण तंत्र का कोणीय संवेग तथा बल-आघूर्ण (Angular Momentum of a System of Particles and Torque)

कण तंत्र का कोणीय संवेग (Angular momentum of a system of particles) माना कोई कण तंत्र बहुत से कणों मिलकर बना है जो स्वतंत्र रूप से गतिमान है। माना कण तंत्र के विभिन्न कणों का किसी निश्चित नियत बिन्दु के सापेक्ष कोणीय संवेग क्रमश: J1 J2 J3 …..इत्यादि है तो उसी बिन्दु के सापेक्ष कण तत्र का कोणीय संवेग विभिन्न कणों के कोणीय संवेगों के सदिश योग के बराबर होता है। यदि J  कण-तंत्र का काणीय संवेग है तो, (यदि कण तंत्र में n कण हों तो)

J = J1 + J2, + J3 +… Jn

= (r1 x  m1 V1 ) + (r2 x m 2 V2 ) + (r3 x m2 v3 )…..

Σ (ri x mi vi)

= Σ(ri x pi) …………………………(1)

(ii) कण तंत्र पर बल-आघूर्ण (Troque acting on a system of particles)

समीकरण (1) से किसी कण तंत्र का कोणीय संवेग

J = Σ (ri x pi)

उपर्युक्त समीकरण को समय के सापेक्ष अवकलित करने पर

Dj/dt = d/dt (Σ ri x pi)

= Σ [d ri/dt x pi x ri x d pi/dt]

लेकिन       dri /dt x pi = vi x mivi = mi (vi x vi) = 0

तथा    dpi /dt = FI

Dj/dt = Σ ri x Fi  ……………………….(2)

 

यदि कण तंत्र पर लगने वाला बल आघूर्ण τ  हैं

Τ = dj/dt  = Σ ri x Fi …………………… …..(3)

t = dtil

जब कण तंत्र में कण गतिमान होते हैं तो उनकी गति बाह्य तथा अन्योन्य क्रिया (interaction क आन्तरिक बलों के प्रभाव में होती है। कण तंत्र के किसी कण पर काय करन वाला पारणामी बल बाह्य तथा आन्तरिक बलों के सदिश योग के बराबर होता है अथात्

Fi = FI  बाह्य + Σ Fij

यहाँ Fi बाह्य  iवे कण पर बाह्य बल है तथा वे कण पर अन्य कणों से अन्योन्य क्रिया के कारण आन्तरिक बलों का योग है।

समीकरण (4) से FI का मान समीकरण (3) में रखने पर।

Τ = Σ ri x  (FI + Σ Fij )

= Σ ri x FI बाह्य + Σ Σ ri x Fij ………………………(5)

समीकरण (5) के R.H.S. का द्वितीय पद पारस्परिक बलों के आघूर्णों के योग को प्रदर्शित करता है। इसमें अन्योन्य क्रिया के आन्तरिक बलों के आघूर्ण एक-दूसरे को सन्तुलित कर लेते हैं क्योंकि बराबर एवं विपरीत एकरेखीय (collinear) बलों के युग्मो (क्रिया तथा प्रतिक्रिया) का आघूर्ण किसी भी बिन्दु के सापेक्ष बराबर एवं विपरीत होगा जिसके कारण इन बल आघूर्णो का योग शन्य हो जायेगा अर्थात

Σ Σ ri x FIJ , =0

T  = Σ ri x FI बाह्य

= Σ T बाह्य ……………………..(6)

या   T = Dj/dt = T बाह्य …………………………..(7)

समीकरण (6) तथा (7) से यह प्रदर्शित होता है कि किसी कण-तंत्र पर विभिन्न कणों पर बाह्य बल द्वारा लगने बल आघों की तत्र पर कुल बल-आघूर्ण उसके मान कण-तंत्र के कोणीय संवेग में परिवर्तन की दर की दर के बराबर होता है।

कण तंत्र का द्रव्यमान केन्द्र के सापेक्ष कोणीय संवेग (Angular Momentum of a System of Particles with Respect to Centre of Mass of the System)

माना कोई कण तंत्र बहुत से कणों से मिलकर बना है। जिसके i वे कण P का स्थिति सदिश किसी नियत बिन्दु 0 के सापेक्ष  ri तथा वेग vi है। माना कण तंत्र के द्रव्यमान केन्द्र का स्थिति सदिश, बिन्दु 0 के सापेक्ष Rcm है तथा द्रव्यमान केन्द्र के सापेक्ष iवे कण का स्थिति सदिश ri तथा वेग vi  है, जैसा कि चित्र (14) में प्रदर्शित किया गया है।

बिन्दु 0 के सापेक्ष कण तंत्र का कोणीय संवेग

J0 = Σ (ri x pi) = Σ mi (ri x vi) …………………….(1)

जहाँ mi iवे कण P का द्रव्यमान है।

द्रव्यमान केन्द्र के सापेक्ष कण – तंत्र का कोणीय संवेग

JCM  Σ mi (ri x vi) ……………………………(2)

उपर्युक्त चित्र (14) से

Ri = r1 – Rcm ………………………..(5)

समीकरण (3) को अवकलित करने पर

Dri/dt = dri/dt – dRcm/dt

VI = Vi – Vcm  ………………………….(4)

समीकरण (3) तथा (4) का मान समीकरण (2) में रखने पर

JCM = Σ mi { (ri – Rcm ) x (vi – vcm)}

= Σ {mi (ri x vi) – mi (ri x vcm) – mi (RCM x vi ) + mi (RCM x vcm)}

= Σ mi (ri x vi) – Σ mi (ri x vcm) – Σ mi (rcm x vi) + Σ mi (rcm x vcm)

चूँकि कण-तंत्र के लिये Rcm तथा vcm  के मान नियत होते हैं, अतः

Jcm = Σ ri x mi vi ) – (Σ mi ri) x vcm – Rcm x (Σ mi vi) + (RCM x Vcm) Σ mi ………………(5)

द्रव्यमान केन्द्र की परिभाषानुसार

Σ mi ri = MRcm

Σ mi vi = M Vcm  ………………………(6)

Σ  mi = M

समीकरण (1) तथा (6) के उपयोग से समीकरण (5) होगा,

JCM = J0 – M (RCM x VCM) – RCM x M vcm + (RCM x VCM) M

= J0 – RCM x M vcm

= J0 – RCM x PCM ………………………….(7)

यहाँ Pcm प्रयोगशाला फ्रेम में द्रव्यमान केन्द्र का रेखीय संवेग है।

अतः  jcm = j0 – jcmo …………… …..(8)

Jcm0 द्रव्यमान केन्द्र का बिन्दु 0 के सापेक्ष कोणीय संवेग है। समीकरण (8) से

J0 = jcm0 + jcm ………. …..(9)

अतः किसी कण तंत्र का किसी बिन्दु 0 के सापेक्ष कोणीय संवेग उस बिन्दु (O) के सापेक्ष द्रव्यमान केन्द्र के कोणीय संवेग तथा द्रव्यमान केन्द्र के सापेक्ष कण तंत्र के कोणीय संवेग के सदिश योग के तुल्य होता है।

Sbistudy

Recent Posts

सती रासो किसकी रचना है , sati raso ke rachnakar kaun hai in hindi , सती रासो के लेखक कौन है

सती रासो के लेखक कौन है सती रासो किसकी रचना है , sati raso ke…

10 hours ago

मारवाड़ रा परगना री विगत किसकी रचना है , marwar ra pargana ri vigat ke lekhak kaun the

marwar ra pargana ri vigat ke lekhak kaun the मारवाड़ रा परगना री विगत किसकी…

11 hours ago

राजस्थान के इतिहास के पुरातात्विक स्रोतों की विवेचना कीजिए sources of rajasthan history in hindi

sources of rajasthan history in hindi राजस्थान के इतिहास के पुरातात्विक स्रोतों की विवेचना कीजिए…

2 days ago

गुर्जरात्रा प्रदेश राजस्थान कौनसा है , किसे कहते है ? gurjaratra pradesh in rajasthan in hindi

gurjaratra pradesh in rajasthan in hindi गुर्जरात्रा प्रदेश राजस्थान कौनसा है , किसे कहते है…

2 days ago

Weston Standard Cell in hindi वेस्टन मानक सेल क्या है इससे सेल विभव (वि.वा.बल) का मापन

वेस्टन मानक सेल क्या है इससे सेल विभव (वि.वा.बल) का मापन Weston Standard Cell in…

3 months ago

polity notes pdf in hindi for upsc prelims and mains exam , SSC , RAS political science hindi medium handwritten

get all types and chapters polity notes pdf in hindi for upsc , SSC ,…

3 months ago
All Rights ReservedView Non-AMP Version
X

Headline

You can control the ways in which we improve and personalize your experience. Please choose whether you wish to allow the following:

Privacy Settings
JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now