JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now

हिंदी माध्यम नोट्स

Categories: physics

एम्पियर का परिपथीय नियम , एंपीयर का परिपथ नियम बताइए क्या है , ampere circuital law in hindi

ampere circuital law in hindi , एम्पियर का परिपथीय नियम , एंपीयर का परिपथ नियम बताइए क्या है :-

साइक्लोट्रॉन :

प्रत्यावर्ती धारा :- उस धारा को कहते है जिसका आधा भाग धनात्मक तथा आधा भाग ऋणात्मक होता है अर्थात 0 से 2π धनात्मक तथा 2π से 4π तक ऋणात्मक होता है।

साइक्लोट्रोन में विद्युत क्षेत्रचुम्बकीय क्षेत्र दोनों एक साथ इस प्रकार लगाये जाते है कि ये परस्पर लम्बवत है यहाँ चुम्बकीय क्षेत्र पर धनावेश को वृत्तीय गति प्रदान करता है जबकि विद्युत बल एक निश्चित अंतराल के बाद धनावेश को ऊर्जा प्रदान करता है।

इसमें D के आकार के दो चालक D1 व D2 होते है जिनके व्यास परस्पर समान्तर होते है इन्हें डिज कहते है , इन डिस्क का सम्बन्ध प्रत्यावर्ती धारा स्रोत से कर दिया जाता है , इन दोनों डिस्क को दो शक्तिशाली चुम्बको के मध्य इस प्रकार रखा जाता है कि विद्युत क्षेत्र व चुम्बकीय क्षेत्र परस्पर लम्बवत रहे।

चूँकि डिज भीतर से खोखली है अत: डिज के भीतर विद्युत क्षेत्र शून्य होगा अत: विद्युत क्षेत्र केवल डिज के मध्य रिक्त स्थान में ही होता है।

जिस धन आवेश को उच्च ऊर्जा तक त्वरित करना होता है उसे दोनों डिज के मध्य रिक्त स्थान में रख दिया जाता है। माना प्रारम्भ में D1 डी ऋण विभव पर तथा D2 डी धन विभव पर है। अत: धनावेश D1 डी में प्रवेश कर जाता है।

चुम्बकीय बल इस आवेश को वृतीय गति प्रदान करता है अत: धनावेश अर्द्ध चक्र पूर्ण कर डिज के मध्य रिक्त स्थान में आकर qV ऊर्जा प्राप्त करता , ठीक इसी समय डिज की ध्रुवता बदल जाती है अत: D1 डी धन विभव पर तथा D2 डी ऋण विभव पर आ जाती है अत: धनावेश D2 डी में प्रवेश करता है तथा अर्द्धचक्र पूर्ण कर वापस दोनों डिज के मध्य रिक्त स्थान में आकार qV ऊर्जा प्राप्त करता है , इस प्रकार धनावेश एक पूर्ण चक्र में दो बार ऊर्जा प्राप्त करता है अत: धनावेश द्वारा एक पूर्ण चक्र में प्राप्त ऊर्जा 2qv होगी। यही क्रम चलता रहता है जब धनावेश कि ऊर्जा पर्याप्त हो जाती है तो इसे बाहर निकाल लिया जाता है तथा इसे लक्ष्य नाभिक पर टकरा दिया जाता है।

गणितीय विवेचना : धनावेशित कण को वृतीय गति कराने के लिए आवश्यक अभिकेन्द्रीय बल mv2/r चुम्बकीय बल qvB से प्राप्त होता है।

mv2/r = qvB

mv = qBr

V = qBr/m  समीकरण-1

कोणीय आवृति –

w = V/r

w का मान –

w = qBr/mr

w = qB/m

चूँकि w = 2πv

यहाँ v = आवृति

V = w/2π

w का मान –

v = qB/2πm

आवर्तकाल

T = 1/v

T = 2πm/qB

गतिज ऊर्जा = mv2/2

v का मान –

v = m[qBr/m]2/2

v = q2B2r2/2m

mv2/2 = q2B2r2/2m

साइक्लोट्रोन का उपयोग :-

  1. साइक्लोट्रोन का उपयोग कर धनावेशित कणों को उच्च ऊर्जा तक त्वरित किया जाता है। इसके पश्चात् इन धनावेशित कणों का उपयोग नाभिकीय विखण्डन में किया जाता है।
  2. ठोसों के आयनों में डोपित करने में इनके गुणों में सुधार तथा नए पदार्थ के उत्पादन में किया जाता है।
  3. साइक्लोट्रोन का उपयोग कर रेडियोएक्टिव पदार्थ उत्पन्न किये जाते है , इन पदार्थो का उपयोग अस्पतालों में रोगों के उपचार तथा निदान में किया जाता है।

चुम्बकीय क्षेत्र की दिशा

दाहिने हाथ के अंगूठे का नियम : यदि दाहिने हाथ की अंगुलियों को इस प्रकार मोड़ा जाए कि मुड़ी हुई अंगुलियाँ धारा की दिशा में तो अंगूठा चुम्बकीय क्षेत्र की दिशा को व्यक्त करता है।

चुम्बकीय क्षेत्र का रेखा समाकलन : चुम्बकीय क्षेत्र में कोई अल्पांश dl है तथा इस अल्पांश पर चुम्बकीय क्षेत्र B है तो B व dl के अदिश गुणनफल के समाकलन को चुम्बकीय क्षेत्र का रेखा समाकलन कहते है।

अर्थात

चुंबकीय क्षेत्र का रेखा समाकलन = ∫B.dl

बंद पथ पर चुम्बकीय क्षेत्र का रेखा समाकलन : यदि चुम्बकीय क्षेत्र में एक बंद पथ की कल्पना की जिस पर कोई अल्पांश dl है तथा अल्पांश पर चुम्बकीय क्षेत्र B है।

अत: बंद पथ पर चुम्बकीय क्षेत्र का रेखा समाकलन = ∫B.dl

एम्पियर का परिपथीय नियम : किसी बंद पथ पर चुम्बकीय क्षेत्र का रेखा समाकलन उस पथ द्वारा परिबद्ध क्षेत्र से गुजरने वाली समस्त धाराओं के बीजगणितीय योग तथा u0 के गुणनफल के बराबर होता है।

∫B.dl = u0εi

u0 = निर्वात या वायु की चुम्बकशीलता

u0 =  4π x 10-7

चुम्बकीय क्षेत्र की दिशा या दाहिने हाथ के अंगूठे का नियम : यदि दाहिने हाथ के हथेली को वृत्ताकार पाश के चारों इस प्रकार मोड़े की मुड़ी हुई अंगुलियाँ धारा की दिशा को व्यक्त करे तो तना हुआ अंगूठा चुम्बकीय क्षेत्र की दिशा को व्यक्त करेगा।

या

यदि किसी धारावाही सीधे तार को दाहिने हाथ से इस प्रकार पकडे की तना हुआ अंगूठा विद्युत धारा की दिशा में हो तो मुड़ी हुई अंगुलियाँ चुम्बकीय क्षेत्र की दिशा को व्यक्त करेगी।

विद्युत धारा अवयव के कारण चुम्बकीय क्षेत्र :-

बायो सावर्ट नियम : –

माना एक चालक तार में i प्रवाहित धारा हो रही है। इस पर कोई अल्पांश dl है। अल्पांश से r दूरी पर स्थित बिंदु P पर उत्पन्न चुम्बकीय क्षेत्र dB है तथा अल्पांश एवं अल्पांश को बिंदु P से मिलाने वाली रेखा के बीच कोण θ है।

बिंदु P पर चुम्बकीय क्षेत्र |dB| =  (μ0 / 4π) × (Idl sinθ / r2)

विद्युत धारावाही वृत्ताकार पाश (लूप) के अक्ष पर चुम्बकीय क्षेत्र (magnetic field on axis of circular loop) :

माना कुण्डली की त्रिज्या R है तथा इसका केन्द्र O है। O से वृत्ताकार पाश की अक्ष पर x दूरी पर स्थित बिन्दु P पर चुम्बकीय क्षेत्र का मान ज्ञात करना है।

अत: पाश पर कोई अल्पांश dl लिया , इस अल्पांश से बिंदु P की दूरी r है।

बिंदु P पर चुम्बकीय क्षेत्र –

dB = u0idl/4πr2   समीकरण-1

dB को घटकों में वियोजित करने पर dBcosθ जुड़ जाए , जबकि dBsinθ निरस्त हो जायेगा अत: बिंदु P पर परिणामी चुम्बकीय क्षेत्र –

B = u0iR2/2r3     समीकरण-2

या

B = u0iR2/2(R2+x2)3

केन्द्र पर चुम्बकीय क्षेत्र –

केंद्र पर x = 0

अत: चुम्बकीय क्षेत्र B = u0i/2R3

अन्नत लम्बाई के लम्बे सीधे धारावाही चालक तार के कारण उत्पन्न चुम्बकीय क्षेत्र :- माना अनंत लम्बाई के लम्बे सीधे चालक तार में i धारा प्रवाहित हो रही है। इस तार से r दूरी पर स्थित बिंदु P पर चुम्बकीय क्षेत्र का मान ज्ञात करना है अत: बिंदु P एवं r त्रिज्या के वृत्ताकार पथ की कल्पना की। जिस पर कोई अल्पांश dl है व इस अल्पांश पर चुम्बकीय क्षेत्र B है।

चुम्बकीय क्षेत्र B = u0i/2πr

ऐम्पियर का परिपथीय नियम (ampere circuital law in hindi) :

कथन : इस नियम के अनुसार “किसी बंद वक्र के परित: चुम्बकीय क्षेत्र की तीव्रता का रेखीय समाकलन उस बंद वक्र द्वारा घिरी आकृति में से गुजरने वाली कुल धारा का μ0 गुना होता है।  “
गणितीय रूप में , ∮B.dl =  μ0 [कुल धारा]
अथवा
∮B.dl =  μ0I . . . . . . . .  समीकरण-1
यहाँ μ0 = निर्वात की निरपेक्ष चुम्बकशीलता
नोट : चुम्बकत्व में एम्पियर का परिपथीय नियम स्थिर विद्युत में गॉस के नियम के समतुल्य है।
उत्पत्ति : एम्पियर के परिपथीय नियम की उत्पत्ति दी जा सकती है , जब किसी भी आकृति के बंद पथ से होकर धारा गुजरती है। किसी भी स्वेच्छग्रहित बंद पथ के लिए एम्पियर के नियम को सिद्ध करने से पूर्व एक विशेष स्थिति में अर्थात किसी धारावाही चालक के परित: बन्द वृत्तीय पथ के लिए इसे सिद्ध करते है।
(a) वृत्तीय पथ के लिए – माना एक लम्बे तार XY में धारा I सिरे X से Y की ओर बह रही है। चालक में धारा बहने से इसके परित: चुम्बकीय क्षेत्र उत्पन्न होगा।
चालक को केंद्र मानते हुए O केंद्र वाले और r त्रिज्या वाले वृत्तीय पथ की कल्पना करते है। माना वृत्तीय पथ का एक अल्पांश PQ (= dl) है तथा बिन्दु P पर चुम्बकीय क्षेत्र B है। दाहिने हाथ के नियमानुसार चुम्बकीय क्षेत्र की दिशा P पर वृत्तीय पथ की स्पर्श रेखा की दिशा में होगी।
स्वभाविक है कि B और अल्पांश dl एक ही दिशा में होंगे। अत: बंद वृत्तिय पथ के लिए चुम्बकीय क्षेत्र का रेखीय समाकलन
∮B.dl =  ∮B.dl.cos0 = ∮B.dl  . . . . . . . .  समीकरण-2
लम्बे और सीधे धारावाही चालक के कारण बिंदु P पर उत्पन्न चुम्बकीय क्षेत्र
B = μ0 2I /4πr
समीकरण-2 से
∮B.dl = ∮μ0 2I.dl /4πr
μ0 2I/4πr∮dl
क्योंकि ∮dl  = 2πr (वृत्त की परिधि)
μ0 2I/4πr(2πr)
या
∮B.dl = μ0I  . . . . . . . .  समीकरण-3
यही एम्पियर का परिपथीय नियम है।
नोट : यह ध्यान देने योग्य है कि वृत्तीय पथ के किसी बिंदु पर चुम्बकीय क्षेत्र का परिमाण पथ की त्रिज्या बदलने पर बदलता है परन्तु B का रेखीय समाकलन किसी भी बन्द वृत्तीय पथ के लिए पथ की त्रिज्या पर निर्भर नहीं करता है अर्थात उसका मान पथ से गुजरने वाली धारा का μ0 गुना ही होता है।

(b) किसी स्वेच्छग्रहित पथ के लिए

एक लम्बे और सीधे धारावाही चालक XY के परित: किसी स्वेच्छग्रहीत बन्द पथ की कल्पना करते है। चालक में x से y की तरफ I धारा बह रही है। बंद पथ को अनेक सूक्ष्म अल्पांशो AB = dl1 , BC = dl2 , CD = dl3 . . . . . . . . में बाँट लेते है। माना इन अल्पांशो से बिंदु O , जहाँ से धारावाही चालक गुजरता है , पर अन्तरित कोण क्रमशः dθ1 , dθ2 , dθ3 . . . . . . . . . है।
चूँकि dθ1 + dθ2 + dθ3 . . . . . . . . . = 2π
माना चाप अल्पांशो AB , BC , CD , . . . .. की त्रिजाएं क्रमशः r1 , r2 , r3 . . . . .है। अत:
1 = dl1/r1 , dθ2 = dl2/r2 , dθ3 = dl3/r3
यदि dl1 ,  dl2 , dl3 . . . . . . . . के अनुदिश चुम्बकीय क्षेत्रों की तीव्रतायें क्रमश: B1 , B2 , B3 . . . . . . है तो स्वेच्छग्रहित बंद पथ के लिए चुम्बकीय क्षेत्र B का रेखीय समाकलन
∮B.dl = B1.dl1 + B2.dl2 + B3.dl3 + . . . . .
चूँकि B1 = μ0.2I/4π.r1 , B2 = μ0.2I/4π.r2 , B3 = μ0.2I/4π.r3
अत: ∮B.dl =  (μ0.2I/4π.r1) .dl1 +  (μ0.2I/4π.r2).dl2 + (μ0.2I/4π.r3).dl3 + . . . .
∮B.dl = μ0.2I/4π [dl1/r1 +  dl2/r2 +  dl3/r3 + . . . . ]
∮B.dl = μ0.2I/4π[ dθ1 + dθ2 + dθ3 + . . . . ]
∮B.dl = (μ0.2I/4π).2π
∮B.dl = μ0.I
यही एम्पियर का परिपथीय नियम है।
Sbistudy

Recent Posts

सती रासो किसकी रचना है , sati raso ke rachnakar kaun hai in hindi , सती रासो के लेखक कौन है

सती रासो के लेखक कौन है सती रासो किसकी रचना है , sati raso ke…

1 day ago

मारवाड़ रा परगना री विगत किसकी रचना है , marwar ra pargana ri vigat ke lekhak kaun the

marwar ra pargana ri vigat ke lekhak kaun the मारवाड़ रा परगना री विगत किसकी…

1 day ago

राजस्थान के इतिहास के पुरातात्विक स्रोतों की विवेचना कीजिए sources of rajasthan history in hindi

sources of rajasthan history in hindi राजस्थान के इतिहास के पुरातात्विक स्रोतों की विवेचना कीजिए…

3 days ago

गुर्जरात्रा प्रदेश राजस्थान कौनसा है , किसे कहते है ? gurjaratra pradesh in rajasthan in hindi

gurjaratra pradesh in rajasthan in hindi गुर्जरात्रा प्रदेश राजस्थान कौनसा है , किसे कहते है…

3 days ago

Weston Standard Cell in hindi वेस्टन मानक सेल क्या है इससे सेल विभव (वि.वा.बल) का मापन

वेस्टन मानक सेल क्या है इससे सेल विभव (वि.वा.बल) का मापन Weston Standard Cell in…

3 months ago

polity notes pdf in hindi for upsc prelims and mains exam , SSC , RAS political science hindi medium handwritten

get all types and chapters polity notes pdf in hindi for upsc , SSC ,…

3 months ago
All Rights ReservedView Non-AMP Version
X

Headline

You can control the ways in which we improve and personalize your experience. Please choose whether you wish to allow the following:

Privacy Settings
JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now