WhatsApp Group Join Now
Telegram Join Join Now

मैक्सवेल का विद्युतचुम्बकीय तरंग सिद्धांत , प्रकाश का सिद्धान्त (maxwell electromagnetic wave theory in hindi)

(maxwell electromagnetic wave theory in hindi) मैक्सवेल का विद्युतचुम्बकीय तरंग सिद्धांत , प्रकाश का सिद्धान्त , प्रयोग क्या है , समझाइये , चित्र और व्याख्या कीजिये |

प्रस्तावना : मैक्स प्लांक का क्वांटम सिद्धांतहमें पढ़ा है जिसमे मैक्स प्लान्क ने ये कहा था कि प्रकाश को गति करने के लिए ईथर का उपस्थित होना आवश्यक है।

इन सन्दर्भ में स्कॉटलैंड के भौतिक वैज्ञानिक मैक्सवेल ने प्रयोग किये और अपने प्रयोगों के आधार पर अपना सिद्धांत 1865 में दिया जिसे मैक्सवेल का विद्युत चुम्बकीय सिद्धांत कहते है , जिसमे उन्होंने बताया कि प्रकाश की गति तरंग के रूप में होती है और इसे गति करने के लिए किसी माध्यम की (इथर) आवश्यकता नहीं होती है। प्रकाश की तरंगों की प्रकृति अनुप्रस्थ होती है।

मैक्सवेल के इस विद्युतचुम्बकीय तरंग सिद्धान्त के आधार पर लगभग 20 साल तक संदेह रहा तथा इसे अपनाया नहीं गया था क्यूंकि मैक्सवेल ने इस सिद्धांत को गणितीय रूप में बताया था लेकिन प्रकाश से सम्बंधित घटनाओं को प्रयोग द्वारा स्पष्ट नही किया था।

बाद में जब हर्ट्ज़ अपने प्रयोग कर रहे थे तो उन्होंने पाया कि मैक्सवेल का सिद्धांत सही था , हर्ट्ज़ ने अपने प्रयोगों में पाया कि प्रकाश तरंग में तथा रेडियो तरंग में कुछ ज्यादा अंतर नहीं था , दोनों ही एक दुसरे के समान थी इसलिए प्रकाश को तरंगों के रूप में माना और अन्य कई प्रयोग किये।

कई प्रयोगों के बाद मैक्सवेल के अनुसार प्रकाश को तरंग मानकर प्रकाश की घटनाओं जैसे परावर्तन , अपवर्तन , ध्रुवण, व्यतिकरण , विवर्तन आदि घटनाओं की व्याख्या कर दी गयी।

लेकिन दूसरी तरफ प्लांक के सिद्धांत को भी नकारा नहीं जा सकता क्यूंकि इस सिद्धांत के आधार पर भी प्रकाश की घटनाओं जैसे प्रकाश विद्युत प्रभाव तथा कॉम्पटन प्रभाव आदि की व्याख्या की गयी थी।

इसके बाद मैक्सवेल के विद्युत चुम्बकीय तरंग सिद्धांत के आधार पर ज़ेमान प्रभाव (Zeeman effect) तथा केर प्रभाव (Kerr effect) की भी व्याख्या सफलतापूर्वक कर दी गयी अत: इस बात को भी नाकारा नही जा सकता था की प्रकाश तरंग के रूप में होती है और प्रकाश अनुप्रस्थ तरंग प्रकृति का होता है।

निष्कर्ष : प्रकाश की सभी घटनाओं को किसी एक सिद्धांत के आधार पर व्याख्या संभव नहीं है इसलिए प्रकाश को द्वेत प्रकृति का माना गया।

मैक्सवेल का विद्युत चुम्बकीय तरंग सिद्धान्त (maxwell’s electromagnetic wave theory in hindi): इस सिद्धांत के अनुसार प्रकाश तरंगे विद्युत चुम्बकीय तरंगें होती है। इन तरंगों में विद्युत और चुम्बकीय क्षेत्र दोनों साथ साथ समान कला में सरल आवर्ती रूप से परिवर्तित होते है। इन तरंगों में विद्युत क्षेत्र (E) सदिश और चुम्बकीय क्षेत्र (B) सदिश परस्पर लम्बवत होते है तथा दोनों तरंग संचरण की दिशा के भी लम्बवत होते है। इस प्रकार विद्युत चुंबकीय तरंगें अनुप्रस्थ होती है। इन तरंगों में दोनों सदिश E और B समान रूप से तरंग के अभिलाक्षणिक गुण को प्रदर्शित करते है परन्तु कुछ क्रियाओं में विद्युत क्षेत्र वेक्टर E चुंबकीय क्षेत्र सदिश (B) की तुलना में अधिक प्रभावी होता है , जैसे – फोटोग्राफिक प्लेट अथवा फिल्मों को केवल सदिश E ही प्रभावित करता है B नहीं।

इसी प्रकार देखने की क्रिया में विद्युत क्षेत्र सदिश E ही अधिक महत्वपूर्ण होता है क्योंकि E ही आँख के रेटिना को प्रभावित करता है , B नहीं। इसलिए विद्युत क्षेत्र वेक्टर को प्रकाश वेक्टर भी कहते है।
अग्र चित्र में विद्युत चुम्बकीय तरंग को प्रदर्शित किया गया है।

अन्तरिक्ष किरणें , गामा किरणें , x किरणें , पराबैंगनी किरणें , दृश्य प्रकाश , अवरक्त किरणें , माइक्रो तरंगें और रेडियो तरंगें सभी विद्युत चुम्बकीय तरंगे है जो आवृत्ति में एक दूसरे से भिन्न है लेकिन समान माध्यम में समान वेग से संचरित होती है।

विद्युत चुम्बकीय तरंगों का इतिहास (history of electromagnetic waves)

मैक्सवेल द्वारा विद्युत चुम्बकीय तरंगों की खोज के बाद विभिन्न वैज्ञानिकों ने इस क्षेत्र में अपना योगदान देकर इसे वृहत् बनाया। योगदान की श्रृंखला निम्नलिखित प्रकार है –
(i) हर्ट्ज का प्रयोग (hertz experiment): जर्मन वैज्ञानिक हेनरिच रुडोल्फ हर्ट्ज़ ने सन 1887 में दोलित्र आवेश द्वारा विद्युत चुम्बकीय तरंगों का उत्पन्न होना प्रयोग द्वारा प्रदर्शित किया। आज की विकसित संचार प्रणाली की आधारशिला हर्ट्ज़ का प्रयोग ही है।
प्रयोग व्यवस्था: हर्ट्ज के प्रयोग का सैद्धांतिक आरेख चित्र में प्रदर्शित है।

इसमें S1और S2दो बड़ी धातु की प्लेटें है जो पीतल की छड़ों R1औरR2से जुडी रहती है है। पीतल की छड़े दो धातु की गोलियांA1और A2से जुडी रहती है। इन गोलियों के मध्य वायु का अंतराल होता है। दोनों गोलियों का सम्बन्ध एक प्रेरण कुंडली की द्वितीयक कुण्डली से होता है ताकि उनके मध्य उच्च विभवान्तर लगाया जा सके। विद्युत चुंबकीय तरंगों के संसूचन के लिए हर्ट्ज़ ने एक संसूचक बनाया जो दो गोलोंD1और D2से जुड़े तार के एक लूप के रूप में है।
कार्यविधि: प्रेरण कुंडली में अन्तरायित धारा प्रवाहित करने पर गोलोंA1और A2के बिच अंतराल में उच्च वोल्टता लगती है। उच्च वोल्टता गोलों के मध्य वायु को आयनित कर देती है। गोलों के मध्य वायु के आयनीकरण के फलस्वरूप उत्पन्न इलेक्ट्रॉन और धनायन विसर्जन के लिए चालक पथ प्रदान करते है जिससे अंतराल में चिंगारी उत्पन्न होती है। ये आवेशित कण आगे पीछे दोलन करने लगते है जिससे विद्युत चुम्बकीय तरंगें उत्पन्न होती है। उत्पन्न विद्युत चुंबकीय तरंगों की आवृत्ति प्लेटों के मध्य धारिता और कुण्डली के प्रेरकत्व द्वारा निर्धारित की जाती है जो निम्नलिखित सूत्र से मिलती है –
f = 1/2π√LC
परिपथ , L-C परिपथ के तुल्य है जिसमें कुंडली प्रेरकत्व प्रदान करती है और गोलीय इलेक्ट्रोड धारिता प्रदान करते है। प्रेरकत्व और धारिता दोनों के मान बहुत कम है अत: दोलनों की आवृति f बहुत अधिक है। अत: परिपथ उच्च आवृत्ति की विद्युत चुम्बकीय तरंगें उत्पन्न करता है। संसूचक ऐसी स्थिति में रखा जाता है कि दोलित आयनों द्वारा उत्पन्न चुम्बकीय क्षेत्र संसूचक कुंडली के लम्बवत रहे। यह दोलित चुम्बकीय क्षेत्र संसूचक कुंडली के अंतरालD1और D2में दोलित्र विद्युत क्षेत्र उत्पन्न करता है और अंतराल में चिंगारी उत्पन्न करता है। यह विद्युत चुम्बकीय तरंगों की उत्पत्ति का सीधा प्रदर्शन है।
जब संसूचक कुण्डली का अंतरालD1D2अन्तरालA1A2के लम्बवत था तो हर्ट्ज़ विद्युत चुम्बकीय तरंगों का संसूचन नहीं कर पाए। स्पष्ट है कि विद्युत चुम्बकीय तरंगें ध्रुवित होती है। इस प्रयोग द्वारा 5 m तरंग दैर्ध्य वाली विद्युत चुम्बकीय तरंगे उत्पन्न हुई।
(ii) बोस की खोज: वैज्ञानिक जगदीश चन्द्र बोस ने हर्ट्ज़ के प्रयोग के 7 वर्ष बाद कलकत्ता में कार्य करते हुए बहुत कम तरंग दैर्ध्य 5 mm से 25 mm परास तक की विद्युत चुम्बकीय तरंगों को उत्पन्न और संसूचित किया।
(iii) मारकोनी की खोज: इसी समय जी.मार्कोनी ने हर्ट्ज़ के कार्य का अनुसरण करते हुए कई किलोमीटर की दूरियों तक विद्युत् चुम्बकीय तरंगों का सफलतापूर्वक प्रयोग किया। मार्कोनी ने अंतराल का एक टर्मिनल एंटीना से और दूसरा पृथ्वी से सम्बन्धित किया। मार्कोनी द्वारा उत्पन्न विद्युत चुम्बकीय तरंगों की खोज से बेतार संचार प्रणाली के द्वार खुल गये।