हिंदी माध्यम नोट्स
दो द्रव्यमान m1 तथा m2 किसी द्रव्यमानहीन k स्प्रिंग नियतांक के स्प्रिंग से निम्न चित्रानुसार युग्मित है तथा घर्षण रहित तल पर रखे हैं।
संख्यात्मक उदाहरण
उदाहरण-1. दो द्रव्यमान m1 तथा m2 किसी द्रव्यमानहीन k स्प्रिंग नियतांक के स्प्रिंग से निम्न चित्रानुसार युग्मित है तथा घर्षण रहित तल पर रखे हैं। यदि यह निकाय स्प्रिंग के लम्बाई के अनुदिश कम्पन करने के लिए स्वतंत्र हो तो सिद्ध करो कि इस निकाय की कम्पन आवृत्ति होगी
हल: v = 1/2π √k/u जहां u = (m1 m2/m1 + m2) है।
माना x2 >x1 है तो स्प्रिंग की लम्बाई में वृद्धि = (x2 – x1)
स्प्रिंग में तनाव F = k(x2 –X1)
द्रव्यमान m1 के गति का समीकरण
M1 d2x1/dt2 = k (x2 –x1) ……………………………….(1)
तथा द्रव्यमान m, के गति का समीकरण
m2 d2x2/dt2 = – k (x2 – X1) ……………………………..(2)
समीकरण (1) को m2 से तथा समीकरण (2) को m1 से गुणा करने पर
M2m1 d2x1/dt2 = m2k (x2 – x1) …………………………….(3)
तथा m2m1 d2x2/dt2 = – m1 k (x2 – x1) ……………………………(4)
समीकरण (4) में से समीकरण (3) को घटाने पर
M1m2 (d2x2/dt2 – d2x1/dt2) = – k (m1 + m2)(x2 – x1)
M1m2 d2(x2 – x1)/dt2 = – k (m1 + m2)(x2 – x1)
माना x = (x2 – X1)
M1m2 d2x/dt2 = – k (m1 + m2)x
(m1m2/m1 + m2) d2x/dt2 = – kx
माना u = (m1m2/m1 + m2) निकाय का समानीत द्रव्यमान (reduced mass) है। ।
U d2x/dt2 = – kx
D2x/dt2 =- k/u x …………………………………….(5)
समीकरण (5) किसी u द्रव्यमान के एकल, आवर्ती दोलक (single harmonic oscillator) के करण के समरूप है। अतः उसके दोलन काल का मान होगा
T = 2π √(u/k)
लेकिन आवृत्ति v = 1/T
दोलन की आवृत्ति v = 1/2π √k/u
इसका उपयोग करके द्विपरमाणुक अणुओं की कम्पन आवत्ति का मान ज्ञात किया जा सकता है।
उदाहरण-2. दो एक समान सरल लोलक एक हल्की स्प्रिंग से युग्मित है और उनकी असामान्य आवृत्तियाँ 1: 2 के अनुपात में है। युग्मक स्प्रिंग के बल नियतांक की गणना करो यदि सरल लोलक के धागे की लम्बाई 1m तथा गोलक का द्रव्यमान 0.1kg है।
हल : एक हल्की स्प्रिंग से युग्मित दोलकों की प्रसामान्य आवृत्तियाँ
ω1 = √ g/l
ω2 = √ g/l + 2k/m
ω22/ ω12 = 1 + 2kl/mg
प्रश्नानुसार ω2/ ω1 = 2/1 m = 0.1 kg, l = 1 m
G = 9.8m/s2
4 = 1 + 2 x 1k/0.1 x 9.8
K = 3 x 0.1 x 9.8/2
k = 1.47 N/m
उदाहरण-3. दो द्रव्यमान 0.01 kg तथा 0.03 kg के एक द्रव्यमानहीन स्प्रिंग से जुड़े हैं जिसका स्प्रिंग नियतांक 10 Nm-1है। यदि द्रव्यमान उनको जोड़ने वाली स्प्रिंग के लम्बाई के अनदिश कम्पन करने के लिए स्वतंत्र हो तो उनकी कम्पन आवृत्ति ज्ञात कीजिए तथा उनकी गतिज ऊर्जाओं के अनुपात की गणना करो।
हल : निकाय का समानीत द्रव्यमान
U = m1m2/m1 + m2 = 0.01 x 0.03/0.01 + 0.03 = 3/4 x 10-2
अतः निकाय की कम्पन आवृत्ति
V = 1/2π √ k/u
= 1/2π √ 10/3/4 x 10-2
= 1/2π √ 10 x 4/3 x 10-2 = 200/34.41 = 5.8 Hz
संवेग संरक्षण के नियम से
P1 + P2 = 0 P1 = P2
लेकिन m1 द्रव्यमान की गतिज ऊर्जा E1 = P12/2m1
M2 द्रव्यमान की गतिज ऊर्जा E2 = p22/2m1
E1/E2 = P12/P22 x 2m2/2m1 = 0.03/0.01 = 3/1
उदाहरण-4. HCI अणु के अन्तरापरमाणुक बल नियतांक का मान 5.4 x 102 Nm-1 इस द्विपरमाणुक अणु के मूल कम्पन आवृत्ति का मान ज्ञात कीजिए। H परमाणु का द्रव्यमान -1.67 x 10-27 kg तथा CI परमाणु का द्रव्यमान = 5.845 x10-26 kg है।
हल : HCIअणु का समानीत द्रव्यमान
M = m1m2/m1 + m2 = 1.67 x 10-27 x 5.845 x 10-26/1.67 x 10-27 + 5.845 x 10-26
= 9.75 x 10-53/ 0.162 x 10-26 kg
HCIअणु की कम्पन आवृति
V = 1/2π √ k/u = 1/2π √ 5.4 x 102/0.162 x 10-26
= 1/2π √ 5.4 x 1028/0.162
= 1/2 √33.33 x 1028
= 5.77 x 1014/6.28
= 0.918 x 1014
= 9.18 x 1013 Hz
Recent Posts
मालकाना का युद्ध malkhana ka yudh kab hua tha in hindi
malkhana ka yudh kab hua tha in hindi मालकाना का युद्ध ? मालकाना के युद्ध…
कान्हड़देव तथा अलाउद्दीन खिलजी के संबंधों पर प्रकाश डालिए
राणा रतन सिंह चित्तौड़ ( 1302 ई. - 1303 ) राजस्थान के इतिहास में गुहिलवंशी…
हम्मीर देव चौहान का इतिहास क्या है ? hammir dev chauhan history in hindi explained
hammir dev chauhan history in hindi explained हम्मीर देव चौहान का इतिहास क्या है ?…
तराइन का प्रथम युद्ध कब और किसके बीच हुआ द्वितीय युद्ध Tarain battle in hindi first and second
Tarain battle in hindi first and second तराइन का प्रथम युद्ध कब और किसके बीच…
चौहानों की उत्पत्ति कैसे हुई थी ? chahamana dynasty ki utpatti kahan se hui in hindi
chahamana dynasty ki utpatti kahan se hui in hindi चौहानों की उत्पत्ति कैसे हुई थी…
भारत पर पहला तुर्क आक्रमण किसने किया कब हुआ first turk invaders who attacked india in hindi
first turk invaders who attacked india in hindi भारत पर पहला तुर्क आक्रमण किसने किया…