JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now

हिंदी माध्यम नोट्स

कांच पट्टिका से प्रकाश का अपवर्तन (Refraction of Light through glass slab in hindi)  कांच पट्टिका का अपवर्तनांक (Refractive Index of glass slab)

 कांच पट्टिका का अपवर्तनांक (Refractive Index of glass slab in hindi) ?

कांच पट्टिका से प्रकाश का अपवर्तन (Refraction of Light through glass slab)
एक पारदर्शी माध्यम जो कि 6 आयताकार फलकों से घिरा हो पट्टिका कहलाती है। पट्टिका के अन्दर जिस दिशा में प्रकाश किरण गमन करती है, मापी गई दूरी पटिका की मोटाई कहलाती है।
जब प्रकाश किरण PQ , पट्टिका पर आपतित होती है तथा पट्टिका में प्रवेश करने पर यह सघन माध्यम में प्रवेश करती है फलतः अभिलम्ब की ओर मुड़कर QR पथ पर गमन करती है तथा पुनः जब यह पट्टिका से निर्गत होती है तो अभिलम्ब से दूर हटती है तथा RS पथ पर गमन करती है। निर्गत किरण RS आपतित किरण PQ के समानान्तर होती है। निर्गत कोण e , आपतन कोण i के समान होता है। निर्गत किरण का, आपतित किरण से अभिलम्बवत् विस्थापन RT = UV = d;  यह पार्श्व विस्थापन कहलाता है एवं t पट्टिका की मोटाई है।

 कांच पट्टिका का अपवर्तनांक (Refractive Index of glass slab)
यदि कांच पट्टिका पर A कोई बिन्दु बनाया गया है तब A से आपतित किरण AB एवं BC दिशा में अपवर्तित होती हुई निर्गत होती है।
AD = t (पट्टिका की वास्तविक मोटाई)
निर्गत किरण को देखने पर यह बिन्दु A’ से आती प्रतीत होती है अतः A का प्रतिबिम्ब A’ पर प्राप्त होता है-
A”D = t1 (पट्टिका की प्रेक्षित मोटाई)

स्नेल नियम से पट्टिका का अपवर्तनांक
μ = sin i/ sin r
चित्र से ∆ DA”B में sin i = DB/A”B तथा ∆ DAB में sin r = DB/AB

अतः μ = AB/A”B = AD/A”D
∵ लगभग अभिलम्ब के अनुदिश आपतित किरण के लिए बिन्दु B एवं D अत्यधिक निकट होंगे अतः
A”B = A”D तथा AB = AD
अतः कांच की पट्टिका का अपवर्तनांक
μ = पट्टिका की वास्वविक मोटाई/ पट्टिका की प्रेक्षित मोटाई = t/t1

दर्पण एवं लेंस की सहायता से द्रव का अपवर्तनांक ज्ञात करना,
(To determine the refractive index of liquid using mirror – lens)
(A) अवतल दर्पण की सहायता से पारदर्शी द्रव का अपवर्तनांक ज्ञात करना:
यदि एक अवतल दर्पण जिसकी मुख्य अक्ष ऊर्ध्वाधर है के वक्रता केन्द्र C पर वस्तु पिन रखी जाती है तो वस्तु पिन का प्रतिबिम्ब I ठीक वक्रता केन्द्र C पर ही प्राप्त होता है क्योंकि वस्तु पिन से आपतित किरण CAB दर्पण पर अभिलम्बवत आपतित होती है। यदि P दर्पण का ध्रुव है तो . .
दर्पण की वक्रता त्रिज्या R = PC
अब यदि दर्पण में एक अपवर्तनांक का पारदर्शी द्रव भरा जाता है तो वस्तु को बिन्दु C’ तक विस्थापित करना पड़ता है ताकि वस्तु एवं वस्तु के प्रतिबिम्ब I’ के मध्य लम्बन न रहे। वास्तव में C’ पर स्थित वस्तु से दर्पण पर आपतित
किरण बिन्दु A पर अपवर्तित होकर दर्पण पर अभिलम्बवत् आपतित होती है अतः इस स्थिति C’ दर्पण के आभासी (प्रेक्षित) वक्रता केन्द्र का कार्य करता है तथा दर्पण की प्रेक्षित (आभासी) वक्रता त्रिज्या R’ = PC’

यदि N1AN2 द्रव पृष्ठ पर अभिलम्ब है तो ∠C’A N1 = i = आपतन कोण,
तथा ∠BA N2 = r = अपवर्तन कोण ।
अतः द्रव का अपवर्तनांक μ = sin i/ sin r
चित्र. से sin i = AD/C”D तथा sir r = AD/CA
⇒ μ = CA/C”A

चूंकि दर्पण को अभिलम्बवत् देखा जा रहा है अतः बिन्दु A व बिन्दु D बहुत समीप होते है।
अतः CA = CD तथा C’A = CD अतः
μ = CA/C”D

पुनः यदि द्रव की मात्रा बहुत कम ली गई है तो दूरी DP नगण्य होगी अतः CD को PC तथा C”D को PC” लिखा जा सकता है, अर्थात्
द्रव का अपवर्तनांक μ = PC/PC” = दर्पण की वास्तविक वक्रता त्रिज्या/द्रव भरने के पश्चात् दर्पण की प्रेक्षित वक्रता त्रिज्या

(B) उत्तल लेंस तथा समतल दर्पण की सहायता से द्रव का अपवर्तनांक ज्ञात करना-
यदि एक समतल दर्पण पर उत्तल लेंस रखकर, एक वस्तु पिन को लेन्स से उतनी दूरी पर रखा जाए कि प्रतिबिम्ब ठीक वस्तु पिन की स्थिति पर ही प्राप्त हो तो वस्तु पिन की यह दूरी उत्तल लेंस की फोकस दूरी L f के समान होती है।
अब यदि. समतल दर्पण एवं उत्तल लेंस के मध्य द्रव (जल) डाल दें तो द्रव समतलावतल लेंस बना लेता है तथा संयोजन एक उत्तल लेंस एवं समतलावतल लेंस का संयुक्त लेंस होता है यदि संयुक्त लेंस के फोकस दूरी F है तो अब वस्तु पिन को बिन्दु C’ (दूरी F) तक विस्थापित करना पड़ता है ताकि प्रतिबिम्ब, ठीक वस्तु पिन पर ही निर्मित हो। यदि द्रव के लेंस की फोकस दूरी f है तो संयुक्त लेंस के लिए
1/F = 1f/L  +  1/f
या द्रव लेंस की फोकस दूरी के लिए 1/f = 1/F – 1f/L ….(1)
चूंकि द्रव के समतलावतल लेंस के एक पृष्ठ की वक्रता त्रिज्या, उत्तल लेंस के निचले पृष्ठ की वक्रता त्रिज्या के समान तथा दूसरे पृष्ठ की वक्रता त्रिज्या समतल दर्पण की वक्रता त्रिज्या के समान होगी अर्थात्
R1 = R (उत्तल लेंस के निचले पृष्ठ की वक्रता त्रिज्या)
तथा R2 = ∞ (समतल दर्पण की वक्रता त्रिज्या)
अतः लेंस निर्माता सूत्र से, द्रव लेंस की फोकस दूरी के लिए
1/f = (μ – 1) (1/R1 – 1/R2)= μ – 1/R
या द्रव का अपवर्तनांक μ = 1़ f/R ….(2)
समीकरण (1) से द्रव लेंस की फोकस दूरी ितथा गोलार्द्धमापी से उत्तल लेंस के निचले पृष्ठ की वक्रता त्रिज्या ज्ञात कर समीकरण (2) से द्रव का अपवर्तनांक ज्ञात किया जा सकता है।

Sbistudy

Recent Posts

Question Tag Definition in english with examples upsc ssc ias state pcs exames important topic

Question Tag Definition • A question tag is a small question at the end of a…

2 weeks ago

Translation in english grammer in hindi examples Step of Translation (अनुवाद के चरण)

Translation 1. Step of Translation (अनुवाद के चरण) • मूल वाक्य का पता करना और उसकी…

2 weeks ago

Report Writing examples in english grammer How to Write Reports explain Exercise

Report Writing • How to Write Reports • Just as no definite rules can be laid down…

2 weeks ago

Letter writing ,types and their examples in english grammer upsc state pcs class 12 10th

Letter writing • Introduction • Letter writing is an intricate task as it demands meticulous attention, still…

2 weeks ago

विश्व के महाद्वीप की भौगोलिक विशेषताएँ continents of the world and their countries in hindi features

continents of the world and their countries in hindi features विश्व के महाद्वीप की भौगोलिक…

2 weeks ago

भारत के वन्य जीव राष्ट्रीय उद्यान list in hin hindi IAS UPSC

भारत के वन्य जीव भारत में जलवायु की दृष्टि से काफी विविधता पाई जाती है,…

2 weeks ago
All Rights ReservedView Non-AMP Version
X

Headline

You can control the ways in which we improve and personalize your experience. Please choose whether you wish to allow the following:

Privacy Settings
JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now