JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now

हिंदी माध्यम नोट्स

Categories: physics

एक खोखले गोले का द्रव्यमान 1kg है एवं इसकी भीतरी व बाहरी त्रिज्याऐं क्रमशः। 0.1m तथा 0.2m है। गोले का इसके व्यास के सापेक्ष जड़त्व आघूर्ण ज्ञात कीजिये|

उदाहरण 8: एक खोखले गोले का द्रव्यमान 1kg है एवं इसकी भीतरी व बाहरी त्रिज्याऐं क्रमशः। 0.1m तथा 0.2m है। गोले का इसके व्यास के सापेक्ष जड़त्व आघूर्ण ज्ञात कीजिये|

हलः प्रश्नानुसार

M = 1kg

R1 = 0.2m, R2 = 0.1 m

व्यास के सापेक्ष जड़त्व आघूर्ण

I = 2/5 M (R51 – R25/R31 – R23)

= 2/5 x 1 [(0.2)5 – (0.1)5/(0.2)3 – (0.1)3]

= 2/5 x 32 – 1/8 – 1

= 2/5 x 31/7 = 1.77 kg-m2

उदाहरण 9 : एक कण की गतिज ऊर्जा 18 जूल है। यदि कोणीय संवेग सदिश घूर्णन अक्षर संपातित है और कण का जड़त्व आघूर्ण इस अक्ष के सापेक्ष 102 किग्रा.-मी. है तो कण का कोणी संवेग ज्ञात करो।

हलः चूंकि कोणीय संवेग सदिश घूर्णन अक्ष से सम्पातित है। अतः ।

J = lω

घूर्णन गतिज ऊर्जा    Erot = 1/2 Iω2 = 1/2 I2 ω2/I = J2/2I

J = 2IErot = 2 x 10-4 x 18

= 6 x 10-2 किग्रा.-मी./सेकण्ड

उदाहरण 10: आप समान दव्यमान तथा समान बाह्य त्रिज्या R के ठोस और खोखले गोलों की पहचान किस प्रकार करेंगे?

हलः घूर्णन अक्ष के सापेक्ष ठोस गोले का जड़त्व आघूर्ण

I = 2/5 MR2 = MK21

परिभ्रमण त्रिज्या   KI = 2/5 R

यदि खोखले गोले की आन्तरिक त्रिज्या  r हो तो घूर्णन अक्ष के सापेक्ष इसका जड़त्व आघूर्ण

I = 2/5 M (R5 – r5/R3 – r3) = MK22

खोखले गोले की घूर्णन त्रिज्या

K2 = 2/5 (R5 – r5/R3 – r3)

K21/K22 = [1 – r3/R3/1- r5/R5] परन्तु R > r अंत r5/R5 < r3/R3

1 = r5/R5 > 1 – r3/R3

K21 < K22

चूंकि K2 का मान ठोस गोले के लिये खोखले गोले के अपेक्षाकृत कम है अतः दोनों को एक साथ नत तल पर लुढ़काने पर उत्पन्न त्वरण

F = (g sin θ/1 + K2/R2)

का मान ठोस गोले के लिए खोखले गोले से अपेक्षाकत अधिक होगा। अतः एक साथ नत तल पर लुढका कर हम पायेगे कि ठोस गोला, खोखले गोले की तुलना में कम समय में ही नत तल के नीचे पहुच जाता है।

उदाहरण 11: R1  आन्तरिक त्रिज्या, R2 बाह्य त्रिज्या,L लम्बाई और M द्रव्यमान वाले खोखले बेलन की मुख्य अक्षों (principal axes) के सापेक्ष जड़त्वीय आघूर्ण ज्ञात करो।

हल  : चित्र में  खोखले बेलन की तीनों मुख्य अक्ष X.Y.Z दिखाई गई हैं। अक्ष Z.खोखले बेलन की ज्यामिति अक्ष है तथा X और Y बेलन के केन्द्र से पारित तथा Z-अक्ष के लम्बवत् अक्ष है।

ज्यामितीय सममिति  (geometrical symmetry) के कारण X व Y अक्ष के सापेक्ष जड़त्व आघूर्ण  बराबर होगा।

Ix  = Iy

Z-अक्ष के सापेक्ष बेलन का जडत्व आघूर्ण निकालने के लिए बेलन को अनेक खोखली डिस्क से बना हुआ माना जा सकता है।

चित्र में एक ऐसी ही डिस्क दिखाई गई है। माना डिस्क का द्रव्यमान mi  तथा आन्तरिक और बाह्य त्रिज्यायें क्रमशः R1  व R2  हैं। Z-अक्ष के सापेक्ष खोखली डिस्क का जड़त्व आघूर्ण

II = 1/2 mi (R12 + R22)

अतः खोखले बेलन का Z-अक्ष के सापेक्ष जड़त्व आघूर्ण

I = 1/2  Σmi (R12 + R22)

= 1/2 (R12 + R22) Σmi = 1/2 M (R12 + R22)  (Σmi = M)

अब मुख्य अक्षों X व Y के सापेक्ष जड़त्व आघूर्ण ज्ञात करने के लिय पहले हमें AB के सापेक्ष जड़त्व आघूर्ण ज्ञात करना होगा और फिर समान्तर अक्षों के प्रमेय से X-अक्ष के सापेक्ष जड़त्व आघूर्ण ज्ञात सकेंगे।

माना dr मोटाई की खोखली डिस्क की बेलन की केन्द्र से दूरी r है। यदि बेलन की एकांक लाना का द्रव्यमान m हो तो

M = M/L

तथा डिस्क का द्रव्यमान = m.dr

डिस्क का अपने व्यास के सापेक्ष जडत्व आघूर्ण

DiAB = 1/4 (mdr) (R21 + R22)

DiX = DiAB  + (m.dr)r2

= 1/4 (mdr) (R21 + R22) + (mdr)r2

Dix = (mdr) (R12 + R22)/4 + (mr2)dr

पूरे बेलन का X-अक्ष के सापेक्ष जड़त्व आघूर्ण निकालने के लिए चर राशि r को -L/2 से +L2 तक समाकलन करना होगा।

Ix = dIx = 1/4 m (R21 + R22) dr + m r2.dr

इसी प्रकार     Ix = M (R21 + R22/4 + L2/12)            (IX = IY)

उदाहरण 12 : 100 ग्राम और 200 ग्राम के दो द्रव्यमान 30 सेमी. की एक हल्की छड़ (द्रव्यमान नगण्य) से पृथक किये गए हैं। इनके द्रव्यमान केन्द्र पर निर्देश तंत्र का मूल बिन्दु है। छड़ X-Y तल में स्थित है और Y-अक्ष से 30° का कोण बनाती है। इस निकाय के जड़त्वीय गुणांक IXX. और IXY ज्ञात कीजिये।

हलः 100 ग्राम के द्रव्यमान से द्रव्यमान केन्द्र की स्थिति

Rcm =  100 x 0 + 200 x 30/100 + 200 =  20 सेमी.

चित्रानुसार द्रव्यमान केन्द्र के सापेक्ष, 100 ग्राम द्रव्यमान के कार्तीय निर्देशाक

X1 = 20 sin 30°

= 20 x 0.5 = 10 सेमी

Y1 = 20 cos 30° = 20 x 1.732/2 = 17.32 सेमी.

Z1 = 0

200 ग्राम द्रव्यमान के कार्तीय निर्देशांक

X2 =-10 sin 30° =- 10 x = – 5.00 सेमी.

y2 =-10 cos 30° =-10 x 3/2 = – 8.66 सेमी.

Z2, =0

उपरोक्त निर्देशांकों के आधार पर जड़त्वीय गुणांकों का मान निम्न रूप से ज्ञात किया जाता है।

IXX = Σmi (ri2 – x2i)

= 100[(20)2 -(10)2 ] + 200[(10)2 -(5.0)2]

= 100 x 300 + 200 x 75

=3x 104 + 1.5 x 104 + = 4.5 x 104 ग्राम-सेमी.

IXX = Σmi XI Yi

=-(100(17.32)(10)-(200)(-5.00)(-8.66)

=-1.732 x 104 – 0.866 x 104

=-2.598 x 104 ग्राम-सेमी2

Sbistudy

Recent Posts

सती रासो किसकी रचना है , sati raso ke rachnakar kaun hai in hindi , सती रासो के लेखक कौन है

सती रासो के लेखक कौन है सती रासो किसकी रचना है , sati raso ke…

12 hours ago

मारवाड़ रा परगना री विगत किसकी रचना है , marwar ra pargana ri vigat ke lekhak kaun the

marwar ra pargana ri vigat ke lekhak kaun the मारवाड़ रा परगना री विगत किसकी…

13 hours ago

राजस्थान के इतिहास के पुरातात्विक स्रोतों की विवेचना कीजिए sources of rajasthan history in hindi

sources of rajasthan history in hindi राजस्थान के इतिहास के पुरातात्विक स्रोतों की विवेचना कीजिए…

2 days ago

गुर्जरात्रा प्रदेश राजस्थान कौनसा है , किसे कहते है ? gurjaratra pradesh in rajasthan in hindi

gurjaratra pradesh in rajasthan in hindi गुर्जरात्रा प्रदेश राजस्थान कौनसा है , किसे कहते है…

2 days ago

Weston Standard Cell in hindi वेस्टन मानक सेल क्या है इससे सेल विभव (वि.वा.बल) का मापन

वेस्टन मानक सेल क्या है इससे सेल विभव (वि.वा.बल) का मापन Weston Standard Cell in…

3 months ago

polity notes pdf in hindi for upsc prelims and mains exam , SSC , RAS political science hindi medium handwritten

get all types and chapters polity notes pdf in hindi for upsc , SSC ,…

3 months ago
All Rights ReservedView Non-AMP Version
X

Headline

You can control the ways in which we improve and personalize your experience. Please choose whether you wish to allow the following:

Privacy Settings
JOIN us on
WhatsApp Group Join Now
Telegram Join Join Now