हिंदी माध्यम नोट्स
एक खाली रॉकेट का भार 5000 किग्रा. है तथा इसमें 40,000 किग्रा. इंधन भर है। यदि ईंधन का निर्वातक वेग 2.0 किलोमीटर/से. हो तो रॉकेट द्वारा प्राप्त अधिकतम वेग ज्ञात कीजिये।
उदाहरण 17 : एक खाली रॉकेट का भार 5000 किग्रा. है तथा इसमें 40,000 किग्रा. इंधन भर है। यदि ईंधन का निर्वातक वेग 2.0 किलोमीटर/से. हो तो रॉकेट द्वारा प्राप्त अधिकतम वेग ज्ञात कीजिये।
[loge 10 = 2.3, log10 3 = 0.4771]
हलः- प्रश्नानुसार, vo = 0.Mo = 5000 + 40.000 = 45000 किग्रा.
M=5000 किलोग्राम, vr = 2.0 किलोमीटर/से.
गुरूत्वीय प्रभाव को नगण्य मानने पर रॉकेट द्वारा प्राप्त अधिकतम वेग का मान
V = v0 + vr loge (MO/M)
= 0 + 2 x 103 x loge 45000/5000
= 2 x 103 x loge (3)2
= 2 x 103 x 2loge 3
= 4 x 103 x 2.3 log103
= 4 x 103 x 2.3 x 0.4771
= 4 x103 x 1.097
= 4.39 x 103 मी./से.
= 4.39 किलोमीटर/से.
उदाहरण 18 : एक 8000 किलोग्राम-भार का रॉकेट ऊर्ध्वाधर उड़ान के लिये तैयार है उसकी निर्वातक चाल 800 मी./से. है। आवश्यक प्रणोद देने के लिये किस दर से गैस निकलनी। चाहिये?
- रॉकेट के भार को सम्भालने (overcome) के लिये। (ii) रॉकेट को प्रारम्भिक ऊर्ध्वाधर त्वरण 3g देने के लिये।
हलः- प्रश्नानुसार,
M(रॉकेट + ईंधन) = 8000 किलोग्राम
Vr = 800 मीटर/से.
(i) रॉकेट के गति समीकरण के अनुसार
M dv/dt = – Mg – vr dM/dt
जिसमें M dv/dt किसी क्षण लगने वाला नेट ऊध्वधिर बल तथा vr dM/dt प्रणोद है
रॉकेट के भारी को सन्तुलित करने के लिए प्रणोद द्वारा कोई नेट ऊर्ध्वाधर बल नहीं लगाना चाहिए।
अर्थात् M dv/dt = 0
अतः समीकरण (1) से
- Mg – vr dM/dt = 0
Dm/dt = – Mg/vr
= 8000 x 9.8/800
= – 98 किलोग्राम/से.
अर्थात् गैस 98 किलोग्राम/से. की दर से निकलनी चाहिए।
(ii) यदि रॉकेट को प्रारम्भिक ऊर्ध्वाधर त्वरण 3g देना है तो समीकरण (1) में
Dv/dt = – 3g रखने पर
-3 Mg =- Mg –Vr dm/dt
dM /dt = – 4Mg /vr
= 4 x 98
=- 392 किलोग्राम/से.
अर्थात् इस स्थिति में गैस 392 किलोग्राम/से. की दर से निकलनी चाहिए।
उदाहरण 19 : एक रॉकेट का द्रव्यमान 20 किलोग्राम है तथा उसमें 180 किलोग्राम ईंधन भरा है। यदि गैस का निर्वातक वेग 1.6 किलोमीटर/से. हो तो पृथ्वी से ऊधिर उठने के लिये न्यूनतम कितने ईंधन की आवश्यकता होगी? यदि ईधन के जलने की दर 20 किलोग्राम/से. हो तो रॉकेट द्वारा प्राप्त अन्तिम ऊधिर वेग ज्ञात करो।।
हल : प्रश्नानुसार,
M(रॉकेट + ईंधन) = 20 + 180 = 200 किलोग्राम
रॉकेट का द्रव्यमान M = 20 किलोग्राम
रॉकेट में ईंधन के खर्च होने की दर इतनी होनी चाहिए कि उससे रॉकेट को दिया गया प्रणोद vr dM/dt प्रारम्भिक भार Mog के बराबर हो तब रॉकेट पृथ्वी से ऊपर उठ सकेगा।
अर्थात् vr = dm/dt = mog
Dm/dt = mog/vr = 200 x 9.8/1.6 x 103 = 1.225 किग्रा./से.
यदि ईंधन जलने की दर 20 किलोग्राम/से. हो तो 180 किलोग्राम ईंधन जलने में लगा समय
t = 180/20 = 9 सेकण्ड
अतः रॉकेट का अन्तिम वेग
v = vo + vr loge (Mo/M) – gt
= 0+ (1.6 x 103) loge(200/20 -9.8 x 9
= 1.6 x 103 x 2.3 log10 10 – 88.2
= 1.6 x 103 x 2.3 – 88.2
= 3680 – 88.2
= 3591.8 मी./से.
= 3.6 किलोमीटर/से.
उदाहरण 20 : 100 ग्राम दव्यमान के एक कण का वेग v =-3i + j + 5 k मी./से. है जबकि उसकी स्थिति बिन्दु r = 7i + 3j + k मीटर पर है। मूल बिन्दु (0,0,0) के प्रति कण का कोणीय संवेग ज्ञात करो।
हलः- प्रश्नानुसार,
m = 100 ग्राम = 0.1 किग्रा., r = (rp – ro) = rp,
क्योंकि निर्देश बिन्दु मूल बिन्दु है।
कोणीय संवेग J = m (r x v)
= 0.1 [(7i +3j + k) (-3i + j + 5k)]
= 0.1 |I j k|
|7 3 1|
|-3 1 5|
=0.1 [i(3 – 5 -1 x 1) + j {i x (-3)-7 x 5} + k {7 x 1 – 3 x (-3)}]
= 0.1 [i (14)+j (-38)+k(16)]
= 1.4 i -3.8 j +1.6k जूल सेकण्ड
उदाहरण 21: एक F = 3 i +2j – 4k न्यूटन का बल निर्देश (मूल) बिन्दु से (2i – 4j + 2k) मीटर दूरी पर एक बिन्दु पर लग रहा है। इस बल का मूल बिन्दु पर बल-आघूर्ण तथा बल-आघूर्ण का परिमाण ज्ञात करो। हलः- प्रश्नानुसार,
F = 3i + 2j – 4k न्यूटन
r = (rp – ro)= 2i – 4j – 2k मीटर
बल-आघूर्ण r x F
= (2i – 4j + 2k) x (3i + 2j – 4k)
|I j k|
|2 -4 2|
|3 2 -4|
= I {(-4)(-4)-2 x 2} + j {3 x 2 – 2 x (-4)} + k {2 x 2-3 x (-4)}
= i(16–4)+j (6+8) + k (4+12)
= i(12)+j (14)+k (16)
= 12i +14j + 16k न्यूटन मीटर
= √(12)2 + (14)2 + (16)2 = √144 + 196 + 256
= 24.4 न्यूटन-मी.
उदाहरण 22 : दो प्रोटोन जिनकी प्रत्येक की ऊर्जा 500 Mev है एक दूसरे की ओर की दिशा में गमन करते हुए कितनी निकटतम दरी तक आ सकते हैं, गणना करो।
हलः- प्रश्नानुसार, प्रोटोन की गतिज ऊर्जा = 500 Mev
= 500 x1.6 x10-13
= 800 x 10-13
जूल प्रोटोन निकाय की कुल ऊर्जा = 2 x 500 Mev
= 2 x 500 x 1.6 x 10-13 जूल
माना दोनों प्रोटोन के बीच की निकटतम दूरी 5 मीटर है तो उस स्थिति में निकाय की स्थितिज , ऊर्जा
U(s) = 1/4 π ε0 q2/s = 9 x 109 x (1.6 x 10-19)2/S
9x 109 (1.6×10-1982
प्रोटोन निकाय की स्थितिज ऊर्जा का मान उनकी कुल गतिज ऊर्जा के बराबर होगा, अर्थात
9 -109 (1.6 x 10-19)2 /s = 1000 x 1.6 x 10-13
S = 9 x 109 x(1.6×10-19 )2 /1000 x 1.6 x 10-13
=1.44 x 10-18 मीटर
Recent Posts
Question Tag Definition in english with examples upsc ssc ias state pcs exames important topic
Question Tag Definition • A question tag is a small question at the end of a…
Translation in english grammer in hindi examples Step of Translation (अनुवाद के चरण)
Translation 1. Step of Translation (अनुवाद के चरण) • मूल वाक्य का पता करना और उसकी…
Report Writing examples in english grammer How to Write Reports explain Exercise
Report Writing • How to Write Reports • Just as no definite rules can be laid down…
Letter writing ,types and their examples in english grammer upsc state pcs class 12 10th
Letter writing • Introduction • Letter writing is an intricate task as it demands meticulous attention, still…
विश्व के महाद्वीप की भौगोलिक विशेषताएँ continents of the world and their countries in hindi features
continents of the world and their countries in hindi features विश्व के महाद्वीप की भौगोलिक…
भारत के वन्य जीव राष्ट्रीय उद्यान list in hin hindi IAS UPSC
भारत के वन्य जीव भारत में जलवायु की दृष्टि से काफी विविधता पाई जाती है,…